Зависимость скорости ферментативной реакции от температуры. Ферментативных реакций кинетика. Структура, свойства и функции белков

Данный раздел энзимологии изучает влияние различных факторов на скорость ферментативной реакции. Учитывая общее уравнение ферментативного катализа обратимой реакции превращения одного субстрата в один продукт (1),

следует назвать главные факторы влияния на скорость ферментативной реакции: концентрация субстрата [S], концентрация фермента [E] и концентрация продукта реакции [P].

Взаимодействие некоторых ферментов с их субстратом можно описать гиперболической кривой зависимости скорости ферментативной реакции V от концентрации субстрата [S] (рис.19):

Рис.19.Зависимость скорости ферментативной реакции от концентрации субстрата.

На этой кривой можно выделить три участка, которые можно объяснить по положениям механизма взаимодействия фермента с субстратом: ОА – участок прямо пропорциональной зависимости V от [S], происходит постепенное заполнение активных центров фермента молекулами субстрата с образованием неустойчивого комплекса ES; участок АВ - криволинейная зависимость V от [S], полное насыщение активных центров фермента молекулами субстрата еще не достигнуто. Комплекс ES до достижения переходного состояния является нестабильным, вероятность обратной диссоциации до E и S еще велика; участок ВС - зависимость описывается уравнением нулевого порядка, участок параллелен оси [S], достигнуто полное насыщение активных ферментов молекулами субстрата, V=V max .

Характерная форма кривой описывается математически уравнением Бриггса-Холдейна:

V=V max ● [S]/ Km + [S] (2),

где Кm - константа Михаэлиса-Ментен, численно равная концентрации субстрата, при которой скорость ферментативной реакции равна половине V max .

Чем меньше K m фермента, тем выше сродство фермента к субстрату, тем быстрее достигается переходное состояние для субстрата, и он превращается в продукт реакции. Поиск значений Km для каждого из субстратов фермента с групповой специфичностью важен при определении биологической роли этого фермента в клетке.

Для большинства ферментов невозможно построить гиперболическую кривую (рис.19), В таком случае используется метод двойных обратных величин (Лайнуивера-Бэрка), т.е. строится графическая зависимость 1/[V] от 1/[S] (рис.20). Метод построения таких кривых в эксперименте очень удобен при изучении влияния различных типов ингибиторов на активность ферментов (см. по тексту дальше).

Рис.20. График зависимости 1/[V] от 1/[S] (метод Лайнуивера-Бэрка),

где y-отсекаемый участок - , а x – отсекаемый участок - , тангенс угла α - .

Зависимость скорости ферментативной реакции V от концентрации фермента [E].

Данная графическая зависимость (рис.21) рассматривается при оптимальных температуре и рН окружающей среды, при концентрациях субстрата, значительно превышающих концентрацию насыщения активных центров фермента.

Рис. 21. Влияние концентрации фермента на скорость ферментативной реакции.

Зависимость скорости ферментативной реакции от концентрации кофактора или кофермента. Для сложных ферментов, следует учитывать, что дефицит коферментных форм витаминов при гиповитаминозах, нарушение поступления в организм ионов металлов обязательно приводят к уменьшению концентрации соответствующих ферментов, необходимых для течения процессов обмена веществ. Поэтому следует сделать вывод о прямой зависимости активности фермента от концентрации кофактора или кофермента.

Влияние концентрации продуктов на скорость ферментативной реакции. Для обратимых реакций, протекающих в организме человека, необходимо учитывать, что продукты прямой реакции могут быть использованы ферментом в качестве субстратов обратной реакции. Поэтому направление течения и момент достижения V max являются зависимыми от соотношения концентраций исходных субстратов и продуктов реакции. Так, например, активность аланинаминотрасферазы, катализирующей превращение:

Аланин + Альфа-кетоглутарат ↔ Пируват + Глутамат

зависит в клетке от соотношения концентраций:

[аланин + альфа-кетоглутарат] / [пируват+глутамат].

МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ. ТЕОРИИ ФЕРМЕНТАТИВНОГО КАТАЛИЗА

Ферменты, как и небелковые катализаторы, увеличивают скорость химической реакции по причине способности снижать энергию активации этой реакции. Энергия активации ферментативной реакции рассчитывается как разность между значением энергии в системе протекающей реакции достигшей переходного состояния и энергией, определяемой в начале реакции (см. графическую зависимость рис. 22).

Рис. 22. Графическая зависимость энергетического состояния химической реакции без фермента (1) и в присутствии фермента (2) от времени течения реакции.

Работы В. Генри и, в особенности, Л. Михаэлиса, М. Ментен по изучению механизма моносубстратных обратимых ферментативных реакций позволили постулировать, что фермент Е сначала обратимо и относительно быстро соединяется со своим субстратом S c образованием фермент-субстратного комплекса (ЕS):

E + S <=> ES (1)

Образование ЕS происходит за счет водородных связей, электростатических, гидрофобных взаимодействий, в некоторых случаях ковалентных, координационных связей между боковыми радикалами аминокислотных остатков активного центра и функциональными группами субстрата. У сложных ферментов функцию контакта с субстратом может выполнить и небелковая часть структуры.

Фермент-субстратный комплекс затем распадается во второй более медленной обратимой реакции с образованием продукта реакции Р и свободного фермента Е:

ES <=> EР <=>E + P (2)

В настоящее время, благодаря работам выше названных ученых, а также Кейлина Д., Чанса Б., Кошленда Д. (теория «индуцированного соответствия»), существуют теоретические положения о четырёх основных моментах в механизме действия фермента на субстрат, определяющих способность ферментов ускорять химические реакции:

1. Ориентация и сближение . Фермент способен связывать молекулу субстрата таким образом, что атакуемая ферментом связь оказывается не только расположенной в непосредственной близости от каталитической группы, но и правильно ориентированной по отношению к ней. Вероятность того, что комплекс ES достигнет переходного состояния за счет ориентации и сближения, сильно увеличивается.

2. Напряжение и деформация : индуцированное соответствие. Присоединение субстрата может вызывать конформационные изменения в молекуле фермента, которые приводят к напряжению структуры активного центра, а также несколько деформируют связанный субстрат, облегчая тем самым достижение комплексом ES переходного состояния. Возникает так называемое индуцированное соответствие между молекулами E и S.

Скорость ферментативных реакций зависит от концентрации суб-

страта. Эта зависимость носит сложный характер, который для определенных ферментов описывается параболической кривой (рис. 29).

Рисунок 29 – Зависимость скорости ферментативной реакции

от концентрации субстрата

Параболический характер зависимости объясняется тем, что при взаимодействии фермента с субстратом происходит образование фермент-субстратного комплекса. Первоначально при увеличении концентрации субстрата происходит возрастание концентрации фермент-субстратных комплексов в реакционной смеси, что проявляется в параллельном повышении скорости реакции. При определенной концентрации субстрата (насыщающей) возникает своеобразное “насышение” всех активных центров молекул ферментов в реакционной смеси. Скорость ферментативной реакции при насыщающей концентрации становится максимальной. При дальнейшем повышении содержания субстрата в реакционной смеси она не изменяется.

Из графика зависимости скорости ферментативной реакции от концентрации субстрата вычисляются два важных показателя:

1. Максимальная скорость реакции (V max). Она определяется как скорость реакции при насыщающей концентрации субстрата. Величина макси-мальной скорости отражает каталитическую мощность фермента. Ферменты, обладающие большей величиной V max , являются более мощными катализаторами. В единицу времени они катализируют превращение большего количества молекул субстрата. Величина максимальной скорос-ти выражается числом оборотов фермента. Число оборотов оценивается количеством молекул субстрата, превращаемых ферментом в единицу времени (с -1). Для большинства ферментов число оборотов находится в пределах 10 4 . В тоже время существуют ферменты, для которых число оборотов значительно больше (600000 – для карбангидразы) или меньше этой величины (100 – для химотрипсина).

2. Константа Михаэлиса (К м). Константа Михаэлиса представляет собой концентрацию субстрата, при которой скорость реакции составляет половину максимальной. Величина К м отражает сродство фермента к суб-страту. Чем больше эта величина, тем меньшее сродство к субстрату имеет фермент. К м выражается в молях субстрата. Так, величина К м по отношению к глюкозе у фермента глюкокиназы составляет 10 ммоль, а для гексокиназы – 0,01 ммоль. Гексокиназа проявляет большее сродство к глюкозе, чем глюкокиназа, при одинаковой концентрации субстрата она с большей скоростью катализирует фосфорилирование глюкозы.



На основании математического анализа кривой зависимости скорости ферментативной реакции от концентрации субстрата Л. Михаэлисом и М. Ментен (1913) была выведена формула, позволяющая оценить взаимоотношение между скоростью реакции, максимальной скоростью и константой Михаэлиса. В настоящее время она определяется как уравнение Михаэлиса – Ментен.

V o = V max [S ]/K м + [S ],

где V o – скорость реакции, S – концентрация субстрата.

Общие свойства ферментов

Несмотря на существование определенных различий в строении, функции и внутриклеточной локализации, для ферментов характерен целый ряд общих свойств. К таковым относятся зависимость проявления их каталитической активности от температуры (термолабильность) и рН среды, а также субстратная специфичность.

Характерным свойством ферментов является термолабильность . Это явление может быть проиллюстрировано графиком зависимости скорости ферментативной реакции от температуры реакционной смеси (рис. 30).

Рисунок 30 – Зависимость скорости ферментативной реакции от температуры

реакционной среды (t опт – оптимальная температура; V – скорость реакции)



Как видно из представленного графика при температуре, близкой к 4 о С ферментативные реакции практически не идут. По этой причине биологические объекты могут определенное время храниться перед проведением биохимических исследований на холоде. Именно холод позволяет сохранять пищевые продукты от аутолиза (самопереваривания).

Повышение температуры сопровождается повышением скорости ферментативной реакции. Причиной этого является повышение кинетичес-кой энергии молекул субстрата и фермента, способствующее повышению скорости взаимодействия между ними. Подобное явление наблюдается до температуры, которая соответствует температурному оптимуму фермента. Температурный оптимум фермента соответствует той температуре, при которой скорость ферментативной реакции максимальна. Для ферментов теплокровных животных оно обычно составляет 28 о С или 37 о С.

Дальнейшее повышение температуры реакционной смеси приводит к постепенному понижению скорости ферментативной реакции. Это явление обусловлено процессом термоденатурации полипептидной цепи белка. Денатурация сопровождается изменением структуры активного центра фермента, следствием чего и становится понижение сродства фермента к суб-страту. При температуре выше 55 о С большинство ферментов полностью утрачивает каталитические свойства (инактивируется). В этой связи прогревание до 55–56 о С широко используется для процедуры пастеризации, которая повышает срок хранения пищевых продуктов (молока и др.).

Большое влияние на скорость ферментативной реакции оказывает рН среды. Как видно из представленного на рис. 31 графика, он напоминает по форме график зависимости скорости ферментативной реакции от температуры.

Рисунок 31 – Зависимость скорости (V ) ферментативной реакции

от рН среды (рН опт – рН оптимум фермента)

Резкое снижение скорости ферментативной реакции при экстремальных значениях рН связано с явлением денатурации полипептидной цепи белковой молекулы под действием кислот и щелочей. Фермент проявляет максимальную каталитическую мощность при величине рН, которая определяется термином рН-оптимум фермента. Большинство известных ферментов имеет оптимум рН в области от 5,0 до 7,5. Вместе с тем существует немало примеров ферментов, у которых величина рН-оптимума смещена в область кислых или щелочных значений рН. К таким ферментам относятся:

Причина существования зависимости скорости ферментативных реакций от рН связана с тем, что величина рН среды оказывает выраженное влияние на степень ионизации функциональных групп субстрата. Особенности ионизации молекулы янтарной кислоты при различной кислотности среды (рН):

Одновременно рН среды оказывает влияние и на степень ионизации аминокислотных радикалов, входящих в состав активного центра фермента:

Если образование фермент-субстратного комплекса стабилизируется за счет электростатических взаимодействий, то становится понятной роль рН в обеспечении оптимальных условий для течения ферментативной реакции (рис. 24).

Скорость реакций катализируемых ферментами, во взаимодействии которых с субстратами не имеют существенного значения электростали-ческие взаимодействия, в меньшей мере зависит от рН среды. На рис. 32 представлена зависимость скорости гидролиза белков папаином. Во взаимодействии этого фермента с субстратом основное значение приобретают гидрофобные взаимодействия. Как видно из представленного графика, у папаина вообще отсутствует четко выраженный рН-оптимум.

Рисунок 32 – Влияние рН на скорость гидролиза белка папаином.

Ферменты обладают определенной специфичностью в отношении субстратов. Под специфичностью подразумевается свойство ферментов катализировать превращение одного или группы сходных по строению субстратов. Существует несколько видов специфичности ферментов.

· Абсолютная специфичность. Под ней подразумевается способность фермента катализировать превращение только одного субстрата. К ферментам, обладающим абсолютной специфичностью, относятся аргиназа, уриказа рестриктазы и др.

· Относительная специфичность . Под ней подразумевается способность фермента катализировать превращение группы сходных по строению субстратов (т.н. протеолитические ферменты гидролизуют различные белки, липаза сложные эфиры глицерина и высших жирных кис-лот, гексокиназа фосфорилирует разные моносахариды). При этом специфичность определяется тем, что фермент оказывает влияние только на определенный тип связи (протеолитические ферменты гидролизуют пептидную связь, липаза гидролизует сложную эфирную связь и т.д.).

· Стереоспецифичность. Под этим термином подразумевается свойство фермента катализировать превращение одного стереоизомера субстрата. Так, ферменты, участвующие в превращении моносахаридов, проявляют специфичность по отношению к их D -стереоизомерам, а ферменты, участвующие в превращении аминокислот, – к их L -стерео-изомерам.

Активность ферментов

Особенностью ферментов как катализаторов является то, что они под действием разных внешних факторов способны изменять свои каталитические свойства. Мерой проявления силы каталитического действия ферментов является их активность . Способность ферментов менять свою активность в различных условиях имеет большой биологический смысл. Это свойство позволяет живой клетке приспосабливать состояние обменных процессов под сиюминутные потребности клеток, которые могут существенно изменяться под влиянием различных внешний факторов.

Определение активности ферментов играет важную роль их характеристике. Существуют некоторые общие принципы количественного определения активности ферментов. Активность ферментов можно определять так:

· либо по скорости накопления в реакционной смеси, где находится фермент продукта реакции;

· либо по скорости исчезновения из реакционной смеси субстрата ферментативной реакции.

Оба эти подхода равнозначны и могут быть использованы на практике. Однако при определении активности фермента необходимо соблюдать следующие условия: в реакционной смеси, в которой проводится определение активности фермента,

· температура должна соответствовать температурному оптимуму данного фермента;

· рН среды должна соответствовать рН-оптимуму данного фермента;

· концентрация субстрата должна быть не меньше насыщающей;

· должны присутствовать кофакторы, если таковые у этого фермента существуют;

· должны присутствовать активаторы фермента.

Таким образом, активность фермента определяется в оптимальных для него условиях. В этих условиях активность фермента пропорциональна его содержанию в исследуемом образце и поэтому может использоваться для косвенной оценки его концентрации.

Активность фермента количественно выражается в единицах активности . За одну единицу активности фермента (ЕД) принимается активность фермента, при которой под его влиянием происходит образование 1 мкмоль продукта реакции (или исчезновение 1 мкмоль суб-страта) в минуту . В системе СИ за единицу ферментативной активности принят катал (кат). 1 катал соответствует активности фермента, при которой происходит образование одного моля продукта реакции (исчезновение одного моля субстрата) за секунду.

Для характеристики ферментов используют также величину удельной активности. Эта единица отражает активность фермента в расчете на единицу его массы и выражается в мкмоль/мин мг белка. Единицы удельной активности используют для оценки чистоты ферментных препаратов. Чем выше величина удельной активности, тем чище ферментный препарат.

С повышением температуры среды скорость ферментативной реакции увеличивается, достигая максимума при какой-то оптимальной температуре, а затем падает до нуля. Для химических реакций существует правило, что при повышении температуры на 10°С скорость реакции увеличивается в два-три раза. Для ферментативных реакций этот температурный коэффициент ниже: на каждые 10°С скорость реакции увеличивается в 2 раза и даже меньше. Наступающее вслед за этим снижение скорости реакции до нуля свидетельствует о денатурации ферментного блока. Оптимальные значения температуры для большинства ферментов находятся в пределах 20 - 40 0 С. Термолабильность ферментов связана с их белковым строением. Некоторые ферменты денатурируют уже при температуре около 40 0 С, но основная часть их инактивируется при температурах выше 40 - 50 0 С. Отдельные ферменты инактивирует холод, т.е. при температурах, близких к 0°С, наступает денатурация.

Повышение температуры тела (лихорадочное состояние) ускоряет биохимические реакции, катализируемые ферментами. Нетрудно подсчитать, что увеличение температуры тела на каждый градус повышает скорость реакции примерно на 20%. При высоких температурах около 39-40°С расточительное использование эндогенных субстратов в клетках больного организма обязательно требуется восполнять их поступление с пищей. Кроме того, при температуре порядка 40°С часть весьма термолабильных ферментов может денатурироваться, что нарушает естественный ход биохимических процессов.

Низкая температура вызывает обратимую инактивацию ферментов вследствие незначительного изменения его пространственной структуры, но достаточного для нарушения соответствующей конфигурации активного центра и молекул субстрата.

Зависимость скорости реакции от рН среды

Для большинства ферментов имеется определенное значение рН, при котором их активность максимальна; выше и ниже этого значения рН активность этих ферментов уменьшается. Однако не во всех случаях кривые, описывающие зависимость активности фермента от рН, имеют колоколообразную форму; иногда эта зависимость может выражаться также прямой. Зависимость скорости ферментативной реакции от рН главным образом свидетельствует о состоянии функциональных групп активного центра фермента. Изменение рН среды влияет на ионизацию кислых и основных групп аминокислотных остатков активного центра, которые участвуют или в связывании субстрата (в контактном участке), или в его превращении (в каталитическом участке). Поэтому специфическое влияние рН может быть вызвано или изменением сродства субстрата к ферменту, или изменением каталитической активности фермента, или обеими причинами вместе.

Большинство субстратов имеют кислотные или основные группы, поэтому рН влияет на степень ионизации субстрата. Фермент предпочтительно связывается или с ионизированной, или с неионизированной формой субстрата. Очевидно, при оптимальном рН и функциональные группы активного центра находятся в наиболее реакционноспособном состоянии, и субстрат находится в форме, предпочтительной для связывания этими группами фермента.

При построении кривых, описывающих зависимость активности фермента от рН, измерения при всех значениях рН обычно проводят в условиях насыщения фермента субстратом, поскольку величина K m для многих ферментов изменяется с изменением рН.

Кривая, характеризующая зависимость активности фермента от рН, может иметь особенно простую форму в тех случаях, когда фермент действует на электростатически нейтральные субстраты или субстраты, у которых заряженные группы не играют существенной роли в каталитическом акте. Примером таких ферментов служит папаин, а также инвертаза, катализирующая гидролиз нейтральных молекул сахарозы и сохраняющая постоянную активность в интервале рН 3,0-7,5.

Значение рН, соответствующее максимальной активности фермента, не обязательно совпадает со значением рН, характерным для нормального внутриклеточного окружения этого фермента; последнее может быть как выше, так и ниже оптимума рН. Это позволяет предположить, что влияние рН на активность фермента может быть одним из факторов, ответственных за регулирование ферментативной активности внутри клетки. Поскольку в клетке содержатся сотни ферментов, и каждый из них по-разному реагирует на изменение рН, значение рН внутри клетки является, возможно, одним из важных элементов в сложной системе регуляции клеточного метаболизма.

Как известно, скорость химической реакции, согласно эмпирическому правилу Вант-Гоффа, при повышении температуры на 10 о увеличивается в 2-4 раза. Однако для ферментативных реакций оно соблюдается лишь до 50-60 о С. При более высоких температурах фермент, представляющий собой белок, денатурирует, изменяется его конформация, и он уже не может выполнять свои каталитические функции. Поэтому зависимость скорости ферментативной реакции от температуры имеет вид кривой с максимумом (рисунок)

Максимум соответствует наивысшей активности фермента, которая обычно измеряется его количеством в мг, которое катализирует 1 мгмоль субстрата за 1 мин. Удельная активность измеряется в расчете на 1 мг фермента (мгмоль/мин). Молярная активность (число оборотов или каталитическая константа) рассчитывается на мгмоль фермента (мгмоль/мгмоль ∙×мин), то есть молярная активность показывает, сколько молекул субстрата превращается за 1 минуту одной молекулой фермента.

Кроме температуры на активность ферментов влияют рН среды и присутствие ингибиторов.

Влияние рН на скорость ферментативной реакции

Для большинства ферментативных реакций оптимальное значение рН среды лежит в интервале 5− 9. Кривая зависимости скорости ферментативной реакции от рН является кривой с максимумом (рисунок)

Такой вид кривой обусловлен тем, что существует оптимальное состояние ионизации субстрата и белковой молекулы фермента (её аминокислотных остатков), которое обеспечивает наиболее прочное их соединение в активном центре и, следовательно, наибольшую скорость реакции.

Ингибиторы ферментов

Действие ферментов может быть ослаблено или полностьюподавлено с помощью определенных веществ – ингибиторов . Их действие может быть обратимым и необратимым.

Обратимые ингибиторы обычно связываются с ферментом нековалентными связями и могут быть легко от них отсоединяться, при этом существуют так называемые конкурентные обратимые ингибиторы, которые имеют сходные структуры с субстратом и стремятся, каждый в первую очередь, связаться с ферментом на субстратсвязывающем участкеактивного центра. Если к ферменту Е добавить конкурентный ингибитор I и субстрат S, то образуются два комплекса по реакциям:



Е + S « ES ® Р + Е

Е + I « Е I ≠ Р

Так как образование комплекса ЕI не приводит к образованию продуктов реакции, то скорость реакции их образования уменьшается, так как уменьшается число активных центров фермента, способных взаимодействовать с субстратом. Поскольку конкурентный ингибитор связывается с ферментом обратимо, то уменьшить его действие можно, увеличивая концентрацию субстрата, так как при этом увеличивается вероятность связывания фермента с субстратом. Ингибитор, мешая образованию фермент-субстратного комплекса, он увеличивает константу Михаэлиса К m , но не изменяет V max .

Неконкурентный обратимый ингибитор не сходен поструктуре, с субстратом, поэтому он может связываться с ферментом и в присутствии и в отсутствии субстрата, и обычно связывается с ферментом не в активном центре, а в другом месте, обычно в регуляторном центре. При этом образуется тройной комплекс: фермент-ингибитор-субстрат (ЕSI), который не приводит к образованию продуктов реакции:

Е + S + I ® Е I ≠ Р

При данном типе ингибирования влияние ингибитора не может быть преодолено повышением концентрации субстрата. Неконкурентный обратимый ингибиторуменьшает как V max , так и К m .

Необратимые ингибиторы ферментов – это соединения, которые образуют прочные связи с ферментом, причем именно в активном его центре. Связывая важные группы на субстрат связывающем участке, они необратимо изменяют его конфигурацию. Так необратимо действуют на ферменты ионы тяжелых металлов Hg +2 и Pb +2 , чем объясняется их токсическое действие на организм человека.

Регуляция действия ферментов осуществляется гормонами.

ДИНАМИЧЕСКАЯ БИОХИМИЯ

Совокупность химических реакций, протекающих в живых клетках, и обеспечивающих организм нужными ему веществами и энергией носят название обмена веществ или метаболизма. Различают катаболизм и анаболизм. Катаболическое превращение – это расщепление сложных молекул, как поступающих с пищей, так и находящихся в клетке, эти процессы называются экзогоническими.

Анаболические процессы (процессы биосинтеза) направлены на образование и обновление структурных элементов клеток, то есть на синтез сложных молекул из простых. Процессы биосинтеза – это восстановительные процессы и они сопровождаются затратой свободной энергии, такие процессы называются эндергоническими. Обе стороны процесса взаимосвязаны между собой во времени и пространстве. Катаболические и анаболические процессы протекают в различных органеллах клетки, где локализованы различные внутриклеточные ферменты. Все метаболические пути взаимосвязаны, что показано на интегральной схеме метаболических путей.


ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ КИНЕТИКА

изучает закономерности протекания во времени ферментативных р-ций, а также их механизм; раздел кинетики химической.

Каталитич. цикл конверсии в-ва S (субстрата) в продукт P под действием фермента E протекает с образованием промежут. соед. X i :

где ki - константы скорости отдельных элементарных стадий, образования фермент-субстратного комплекса X 1 (ES, комплекс Михаэлиса).

При данной т-ре скорость р-ции зависит от концентраций фермента, субстрата и состава среды. Различают стационарную, предстационарную и релаксационную кинетику ферментативных р-ций.

Стационарная кинетика. В стационарном состоянии по промежуточным соед. (dX i /dt = 0, i = 1, ..., n ) и при избытке субстрата , где [S] 0 и [E] 0 - начальные концентрации соотв. субстрата и фермента, кинетика процесса характеризуется постоянным, неизменным во времени уровнем концентраций промежут. соед., а выражение для скорости процесса v 0 , наз. начальной стационарной скоростью, имеет вид (ур-ние Михаэлиса- Ментен):

(1)

где значения k кат и К м -> ф-ции констант скорости элементарных стадий и заданы ур-нениями:


Величину k кат наз. эффективной каталитич. константой скорости процесса, параметр К м -> константой Михаэлиса. Значение k кат определяется величинами наиб. медленных стадий каталитич. р-ций и иногда наз. числом оборотов фермента (ферментной системы); k кат характеризует число каталитич. циклов, совершаемых ферментной системой в единицу времени. Наиб. распространены , имеющие значение k кат. для специфич. субстратов в диапазоне 10 2 -10 3 с -1 . Типичные значения константы Михаэлиса лежат в интервале 10 -3 - 10 -4 M.

При больших концентрациях субстрата, когда т. е. скорость р-ции не зависит от концентрации субстрата и достигает постоянной величины, наз. макс. скоростью. Графически ур-ние Михаэлиса - Ментен представляет собой гиперболу. Его можно линеаризовать, используя метод двойных обратных величин (метод Лайнуи-вера - Берка), т. е. строя зависимость 1/vот 1/[S] 0 , или др. методы. Линейная форма ур-ния (1) имеет вид:

(2)

Она позволяет определить графически значения К м и v макс (рис. 1).


Рис. 1. График линейной трансформации ур-ния Михаэлиса - Ментен в двойных обратных величинах (по Лайнуиверу - Берку).

Величина К м > численно равна концентрации субстрата, при к-рой скорость р-ции равна , поэтому К м часто служит мерой сродства субстрата и фермента, однако это справедливо лишь, если

Величины К м > и изменяются в зависимости от значений рН. Это связано со способностью участвующих в катализе групп молекулы фермента изменять свое состояние ионизации и, тем самым, свою каталитич. эффективность. В простейшем случае изменение рН приводит к протонированию или депротонированию, по крайней мере, двух ионизирующихся групп фермента, участвующих в катализе. Если при этом только одна форма фермент-субстратного комплекса (напр., ESH) из трех возможных (ES, ESH и ESH 2) способна превращаться в продукт р-ции, то зависимость скорости от рН описывается ф-лой:


где f = 1 + / и f " = 1 + + K" b /> -т. наз. рН-ф-ции Михаэлиса, а К а, К b и К" a , K" b -> константы ионизации групп аи bсоотв. своб. фермента и фермент-субстратного комплекса. В координатах lg - рН эта зависимость представлена на рис. 2, причем тангенсы углов наклона касательных к восходящей, независимой от рН, и нисходящей ветвям кривой должны быть равны соответственно +1, 0 и -1. Из такого графика можно определить значения рК а групп, участвующих в катализе.


Рис. 2. Зависимость каталитич. константы от рН в логарифмич. координатах.

Скорость ферментативной р-ции не всегда подчиняется ур-нию (1). Один из часто встречающихся случаев - участие в р-ции аллостерич. ферментов (см. Регуляторы ферментов), для к-рых зависимость степени насыщения фермента от [S] 0 имеет негиперболич. характер (рис. 3). Это явление обусловлено кооперативностью связывания субстрата, т. е. когда связывание субстрата на одном из участков макромолекулы фермента увеличивает (положит. кооперативность) или уменьшает (отрицат. кооперативность) сродство к субстрату др. участка.


Рис. З Зависимость степени насыщения фермента субстратом от концентрации субстрата при положительной (I) и отрицательной (II) кооперативности, а также в ее отсутствии (III).

Предстационарная кинетика. При быстром смешении р-ров фермента и субстрата в интервале времен 10 -6 -10 -1 с можно наблюдать переходные процессы, предшествующие образованию устойчивого стационарного состояния. В этом предстационарном режиме при использовании большого избытка субстрата система дифференц. ур-ний, описывающая кинетику процессов, линейна. Решение данного типа системы линейных дифференц. ур-ний дается суммой экспоненциальных членов. Так, для кинетич. схемы, представленной выше, кинетика накопления продукта имеет вид:


где A i -> , b, а n -> ф-ции элементарных констант скорости; -корни соответствующего характеристич. ур-ния.

Величина, обратная , наз. характеристич. временем процесса:

Для р-ции, протекающей с участием nпромежут. соед., можно получить nхарактеристич. времен.

Исследование кинетики ферментативной р-ции в предстационарном режиме позволяет получить представление о детальном механизме каталитич. цикла и определить константы скорости элементарных стадий процесса.

Экспериментально кинетику ферментативной р-ции в предстационарном режиме исследуют с помощью метода остановленной струи (см. Струевые кинетические методы), позволяющего смешивать компоненты р-ции в течение 1 мс.

Релаксационная кинетика. При быстром возмущающем воздействии на систему (изменение т-ры, давления, электрич. поля) время, к-рое необходимо системе для достижения нового равновесия или стационарного состояния, зависит от скорости процессов, определяющих каталитич. ферментативный цикл.

Система ур-ний, описывающая кинетику процесса, линейна, если смещение от положения равновесия невелико. Решение системы приводит к зависимостям концентраций компонентов разл. стадий процесса в виде суммы экспоненциальных членов, показатели экспонент к-рых имеют характер времен релаксаций. Результатом исследования является спектр времен релаксации, соответствующий числу промежут. соед., участвующих в процессе. Величины времен релаксаций зависят от констант скорости элементарных стадий процессов.

Релаксационные методы кинетики позволяют определить константы скорости отдельных элементарных стадий трансформации интермедиатов. Методы изучения релаксационной кинетики имеют разл. разрешающую способность: поглощение ультразвука - 10 -6 -10 -10 с, температурный скачок - 1O -4 -10 -6 с, метод электрич. импульса - 10 -4 -10 -6 с, скачок давления - 10 -2 с. При исследовании кинетики ферментативных р-ций наиб, применение нашел метод температурного скачка.

Макрокинетика ферментативных процессов. Развитие методов получения гетерогенных катализаторов путем иммобилизации ферментов на разл. носителях (см. Иммобилизованные ферменты )обусловило необходимость анализа кинетики процессов с учетом массопереноса субстрата. Теоретически и экспериментально исследованы закономерности кинетики р-ций с учетом эффектов диффузионного слоя и для систем с внутридиффузионными затруднениями при распределении фермента внутри носителя.

В условиях, когда на кинетику процесса влияет диффузионный перенос субстрата, каталитич. эффективность системы уменьшается. Фактор эффективности равен отношению плотности потока продукта в условиях протекания ферментативной р-ции с диффузионно пониженной концентрацией субстрата к потоку, к-рый мог бы реализоваться в отсутствие диффузионных ограничений. В чисто диффузионной области, когда скорость процесса определяется массопереносом субстрата, фактор эффективности для систем с внешнедиффузи-онным торможением обратно пропорционален диффузионному модулю :


где толщина диффузионного слоя, D - коэф. диффузии субстрата.

Для систем с внутридиффузионным торможением в р-циях первого порядка


где Ф т - безразмерный модуль (модуль Тиле).

При анализе кинетич. закономерностей в ферментативных реакторах широкое теоретич. и эксперим. развитие получили "идеальные" модели реакторов, проточный (проточный реактор идеального перемешивания), проточный реактор с идеальным вытеснением, мембранный реактор.

Кинетика полиферментных процессов. В организме (клетке) ферменты действуют не изолированно, а катализируют цепи трансформации молекул. Р-ции в полиферментных системах с кинетич. точки зрения можно рассматривать как последоват. процессы, специфич. особенностью к-рых является ферментами каждой из стадий:

где , соотв. макс, скорость процесса и константа Михаэлиса i -й стадии р-ции соответственно.

Важная особенность процесса - возможность образования устойчивого стационарного состояния. Условием-его возникновения может служить неравенство > v 0 , где v 0 - скорость лимитирующей стадии, характеризуемой наименьшей константой скорости и тем самым определяющей скорость всего последоват. процесса. В стационарном состоянии концентрации метаболитов после лимитирующей стадии меньше константы Михаэлиса соответствующего фермента.

Специфич. группу полиферментных систем составляют системы, осуществляющие окислит.-восстановит. р-ции с участием белковых переносчиков электронов. Переносчики образуют специфич. структуры, комплексы с детерминированной последовательностью переноса электрона. Кинетич. описание такого рода систем рассматривает в качестве независимой переменной состояния цепей с разл. степенью заселенности электронами.

Применение. Ф. р. к. широко используют в исследовательской практике для изучения механизмов действия ферментов и ферментных систем. Практически значимая область науки о ферментах - инженерная энзимология, оперирует понятиями Ф. р. к. для оптимизации биотехнол. процессов.

Лит.: Полторак О. M., Чухрай E. С, Физико-химические основы ферментативного катализа, M., 1971; Березин И. В., Мартинек К, Основы физической химии ферментативного катализа, M., 1977; Варфоломеев С. Д., Зайцев С. В., Кинетические методы в биохимических исследованиях, M.. 1982. С. Д. Варфоломеев.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ КИНЕТИКА" в других словарях:

    Каталитич. р ция циклич. процесс, складывающийся из ряда элементарных р ций, скорости к рых описываются действующих масс законом. Этот закон имеет простую форму для идеальных газовых смесей, идеальных р ров и идеальных поверхностных слоев.… … Химическая энциклопедия

    Кинетика химических реакций, учение о химических процессах о законах их протекания во времени, скоростях и механизмах. С исследованиями кинетики химических реакций связаны важнейшие направления современной химии и химической… … Большая советская энциклопедия

    КИНЕТИКА ХИМИЧЕСКАЯ - (от греч. kinesis движение), отдел теоретической химии, посвященный изучению законов хим. реакций. Можно наметить несколько типов хим. взаимодействий и прежде всего отличать реакции, протекающие в гомогенной (однородной) среде, от реакций,… … Большая медицинская энциклопедия

    - (биокатализ), ускорение биохим. р ций при участии белковых макромолекул, называемых ферментами (энзимами). Ф. к. разновидность катализа, хотя термин ферментация (брожение)известен с давних времен, когда еще не было понятия хим. катализа. Первое… … Химическая энциклопедия

    - (от лат. re приставка, означающая обратное действие, и actio действие), превращения одних в в (исходных соед.) в другие (продукты р ции) при неизменяемости ядер атомов (в отличие от ядерных реакций). Исходные соединения в Р. х. иногда наз.… … Химическая энциклопедия

    - (от лат. fermentum закваска) (энзимы), белки, выполняющие роль катализаторов в живых организмах. Осн. ф ции Ф. ускорять превращение в в, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его … Химическая энциклопедия

    - (от греч. pharmakon лекарство и kinetikos приводящий в движение), изучает кинетич. закономерности процессов, происходящих с лек. ср вом в организме. Осн. фармакокинетич. процессы: всасывание, распределение, метаболизм и экскреция (выведение).… … Химическая энциклопедия