Уравнение плоскости, проходящей через три точки. Уравнения плоскости: общее, через три точки, нормальное Уравнение плоскости перпендикулярной вектору


В этой статье мы поговорим о том, как составляется уравнение плоскости, проходящей через заданную точку трехмерного пространства перпендикулярно к заданной прямой . Сначала разберем принцип нахождения уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, после чего подробно разберем решения характерных примеров и задач.

Навигация по странице.

Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.

Поставим перед собой следующую задачу.

Пусть в трехмерном пространстве зафиксирована Oxyz , задана точка , прямая a и требуется написать уравнение плоскости , проходящей через точку М 1 перпендикулярно к прямой a .

Сначала вспомним один важный факт.

На уроках геометрии в средней школе доказывается теорема: через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к данной прямой (доказательство этой теоремы Вы можете найти в учебнике геометрии за 10 -11 классы, указанном в списке литературы в конце статьи).

Теперь покажем, как находится уравнение этой единственной плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

В условии задачи нам даны координаты x 1 , y 1 , z 1 точки М 1 , через которую проходит плоскость . Тогда, если мы найдем координаты нормального вектора плоскости , то мы сможем составить требуемое уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Примеры составления уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Рассмотрим решения нескольких примеров, в которых находится уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.

Пример.

Напишите уравнение плоскости, которая проходит через точку , и перпендикулярна к координатной прямой Oz .

Решение.

Направляющим вектором координатной прямой Oz , очевидно, является координатный вектор . Тогда нормальный вектор плоскости, уравнение которой нам требуется составить, имеет координаты . Напишем уравнение плоскости, проходящей через точку и имеющей нормальный вектор с координатами :
.

Покажем второй способ решения этой задачи.

Плоскость, перпендикулярную координатной прямой Oz задает неполное общее уравнением плоскости вида . Найдем значения С и D , при которых плоскость проходит через точку , подставив координаты этой точки в уравнение : . Таким образом, числа С и D связаны соотношением . Приняв C=1 , получаем D=-5 . Подставляем найденные C=1 и D=-5 в уравнение и получаем искомое уравнение плоскости, перпендикулярной к прямой Oz и проходящей через точку . Оно имеет вид .

Ответ:

Пример.

Напишите уравнение плоскости, которая проходит через начало координат и перпендикулярна прямой .

Решение.

Так как плоскость, уравнение которой нам требуется получить, перпендикулярна к прямой , то нормальным вектором плоскости можно принять направляющий вектор заданной прямой. Тогда . Осталось написать уравнение плоскости, проходящей через точку и имеющей нормальный вектор : . Это и есть искомое уравнение плоскости, проходящей через начало координат перпендикулярно к заданной прямой.

Ответ:

.

Пример.

В прямоугольной системе координат Oxyz в трехмерном пространстве заданы две точки и . Плоскость проходит через точку А перпендикулярно прямой АВ . Напишите уравнение плоскости в отрезках.

Решение.

Общее уравнение плоскости, проходящей через точку и имеющей нормальный вектор плоскости , запишется как .

Осталось перейти к требуемому уравнению плоскости в отрезках:

.

Ответ:

.

В заключении отметим, что существуют задачи, в которых требуется написать уравнение плоскости, проходящей через заданную точку и перпендикулярной к двум заданным пересекающимся плоскостям . По сути, решение этой задачи сводится к составлению уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, так как две пересекающиеся плоскости задают прямую линию. В этом случае основную сложность представляет процесс поиска координат нормального вектора плоскости, уравнение которой требуется составить.. Тогда, направляющим вектором прямой a примем и :

Следовательно, вектор является нормальным вектором плоскости, перпендикулярной к прямой a . Напишем уравнение плоскости, проходящей через точку и имеющей нормальный вектор :
.

Это и есть искомое уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Ответ:

.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Рассмотрим в пространстве плоскость Q. Положение ее вполне определяется заданием вектора N, перпендикулярного этой плоскости, и некоторой фиксированной точки лежащей в плоскости Q. Вектор N, перпендикулярный плоскости Q, называется нормальным вектором этой плоскости. Если обозначить через А, В и С проекции нормального вектора N, то

Выведем уравнение плоскости Q, проходящей через данную точку и имеющей данный нормальный вектор . Для этого рассмотрим вектор соединяющий точку с произвольной точкой плоскости Q (рис. 81).

При любом положении точки М на плоскости Q вектор МХМ перпендикулярен нормальному вектору N плоскости Q. Поэтому скалярное произведение Запишем скалярное произведение через проекции. Так как , а вектор , то

и, следовательно,

Мы показали, что координаты любой точки плоскости Q удовлетворяют уравнению (4). Нетрудно заметить, что координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (в последнем случае ). Следовательно, нами получено искомое уравнение плоскости Q. Уравнение (4) называется уравнением плоскости, проходящей через данную точку. Оно первой степени относительно текущих координат

Итак, мы показали, что всякой плоскости соответствует уравнение первой степени относительно текущих координат.

Пример 1. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору .

Решение. Здесь . На основании формулы (4) получим

или, после упрощения,

Придавая коэффициентам А, В и С уравнения (4) различные значения, мы можем получить уравнение любой плоскости, проходящей через точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей. Уравнение (4), в котором коэффициенты А, В и С могут принимать любые значения, называются уравнением связки плоскостей.

Пример 2. Составить уравнение плоскости, проходящей через три точки , (рис. 82).

Решение. Напишем уравнение связки плоскостей, проходящих через точку

Если все числа А , В , С и D отличны от нуля, то общее уравнение плоскости называется полным . В противном случае, общее уравнение плоскости называется неполным .

Рассмотрим все возможные общие неполные уравнения плоскости в прямоугольной системе координат Oxyz в трехмерном пространстве.

Пусть D = 0 , тогда имеем общее неполное уравнение плоскости вида . Эта плоскость в прямоугольной системе координт Oxyz проходит через начало координат. Действительно, при подстановке координат точки в полученное неполное уравнение плоскости мы приходим к тождеству .


При , или , или имеем общие неполные уравнения плоскостей , или , или соответственно. Эти уравнения задают плоскости, параллельные координатным плоскостям Oxy , Oxz и Oyz соответственно (смотрите статью условие параллельности плоскостей) и проходящие через точки и соответственно. При. Так как точка принадлежит плоскости по условию, то координаты этой точки должны удовлетворять уравнению плоскости , то есть, должно быть справедливо равенство . Отсюда находим . Таким образом, искомое уравнение имеет вид .

Приведем второй способ решения этой задачи.

Так как плоскость, общее уравнение которой нам требуется составить, параллельна плоскости Oyz , то в качестве ее нормального вектора можно взять нормальный вектор плоскости Oyz . Нормальным вектором координатной плоскости Oyz является координатный вектор . Теперь мы знаем нормальный вектор плоскости и точку плоскости, следовательно, можем записать ее общее уравнение (подобную задачу мы решали в предыдущем пункте этой статьи):
, тогда ее координаты должны удовлетворять уравнению плоскости. Следовательно, справедливо равенство , откуда находим . Теперь мы можем написать искомое общее уравнение плоскости, оно имеет вид .

Ответ:

Список литературы.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α 1 и α 2 , заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α 1 и α 2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x +2y -3z +4=0 и 2x +3y +z +8=0.

Условие параллельности двух плоскостей.

Две плоскости α 1 и α 2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t , что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.


КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t . Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикулярен Ox , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz .

Примеры.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостью xOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .


УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим