Крупнейшие аварии на аэс. Хронология аварий и катастроф на аэс Аварии на атомных электростанциях

В штатном режиме АЭС абсолютно безопасны, но аварийные ситуации с выбросами радиации оказывают губительное влияние на экологию и здоровье населения. Несмотря на внедрение технологий и автоматических систем мониторинга, угроза возникновения потенциально опасной ситуации остаётся. У каждой трагедии в истории атомной энергетики собственная неповторимая анатомия. Человеческий фактор, невнимательность, отказ оборудования, стихийные бедствия и роковое стечение обстоятельств могут привести к аварии с человеческими жертвами.

Что в атомной энергетике называют аварией

Как и на любом технологическом объекте, на атомной станции бывают нештатные ситуации. Поскольку аварии могут влиять на экологию в радиусе до 30 километров, чтобы максимально оперативно реагировать на инцидент и предотвратить последствия, Международное агентство по атомной энергии (МАГАТЭ) разработало Международную шкалу ядерных событий INES (с англ. International Nuclear Events Scale). Все события оцениваются по 7-балльной шкале.

0 баллов - нештатные ситуации, которые не повлияли на безопасность АЭС. Для их устранения не пришлось задействовать дополнительные системы, угрозы утечки радиации не было, но некоторые механизмы работали со сбоями. Ситуации нулевого уровня периодически происходят на каждой атомной станции.

1 балл по INES или аномалия - работа станции вне установленного режима. В эту категорию попадают, например, похищение низкоактивных источников или облучение постороннего человека дозой, которая превышает годовую, но не несёт опасности для здоровья пострадавшего.

2 балла или инцидент - ситуация, которая привела к переоблучению работников станции или значительному распространению радиации вне установленных проектом зон в пределах станции. Двумя баллами оценивают рост уровня радиации в рабочей зоне до 50 мЗв/ч (при годовой норме 3 мЗв), повреждение изоляционной упаковки высокоактивных отходов или источников.

3 балла - класс серьёзного инцидента присваивают нештатным ситуациям, которые привели к повышению радиации в рабочей зоне до 1 Зв/ч, возможны незначительные утечки радиации за пределы станции. У населения могут наблюдаться ожоги и другие не смертельные эффекты. Особенность аварий третьего уровня заключается в том, что распространение радиации работникам удаётся предотвратить самостоятельно, задействовав все эшелоны защиты.

Такие аварийные ситуации несут угрозу прежде всего для работников станции. Пожар на атомной станции «Вандельос» (Испания) в 1989 году или авария на Хмельницкой АЭС в 1996 году с выбросом радиоактивных продуктов в помещения станции привели к жертвам среди сотрудников. Известен ещё один случай, имевший место на Ровенской АЭС в 2008 году. Персонал обнаружил в оборудовании реакторной установки потенциально опасный дефект. Реактор второго энергоблока пришлось перевести в холодное состояние на время проведения ремонтных работ.

Внештатные ситуации от 4 и до 8 баллов называются авариями.

Какие бывают аварии на АЭС

4 балла - это авария, которая не несёт значительного риска за пределами рабочей площадки станции, но возможны смертельные исходы среди населения. Чаще всего причинами таких инцидентов является расплавление или повреждение тепловыделяющих элементов, сопровождающиеся небольшой утечкой радиоактивного материала в пределах реактора, что может привести к выбросу наружу.

В 1999 году 4-балльная авария случилась в Японии на радиотехническом заводе «Токаймура». Во время очищения урана для последующего изготовления ядерного топлива, сотрудники нарушили правила технического процесса и запустили самоподдерживающую ядерную реакцию. Облучению подверглись 600 человек, с завода эвакуировали 135 сотрудников.

5 баллов - авария с широкими последствиями. Характеризуется повреждением физических барьеров между активной зоной реактора и рабочими помещениями, критическим режимом работы и возникновением пожара. В окружающую среду выбрасывается радиологический эквивалент нескольких сотен терабеккерелей йода-131. Может проводиться эвакуация населения.

Именно 5-й уровень присвоили крупной аварии в США. Случилась она в марте 1979-го года на АЭС «Три-Майл-Айленд». На втором энергоблоке слишком поздно обнаружили утечку теплоносителя (паровой или жидкой смеси, удаляющей из реактора тепло). Сбой произошёл в первом контуре установки, это привело к остановке процесса охлаждения тепловыделяющих сборок. Пострадала половина активной зоны реактора, она полностью расплавилась. Помещения второго энергоблока были сильно загрязнены радиоактивными продуктами, однако за пределами АЭС уровень радиации остался в норме.

Значительная авария соответствует 6 баллам. Речь идёт об инцидентах, связанных выбросом существенных объёмов радиоактивных веществ в окружающую среду. Проводятся эвакуация, размещение людей в укрытиях. Помещения станции могут быть смертельно опасны.

Инциденту, известному под названием «Кыштымская авария», присвоили 6 уровень опасности. На химическом комбинате «Маяк» произошёл взрыв ёмкости для радиоактивных отходов. Это случилось из-за поломки системы охлаждения. Ёмкость была полностью разрушена, бетонное перекрытие сорвало взрывом, который оценили в десятки тонн в тротиловом эквиваленте. Образовалось радиоактивное облако, но до 90% радиационных загрязнений выпали на территории химического комбината. В процессе ликвидации аварии было эвакуировано 12 тысяч человек. Место инцидента именуется Восточно-Уральским радиоактивным следом.

Отдельно классифицируются аварии как проектные и запроектные. Для проектных определены исходные события, порядок устранения и конечные состояния. Такие аварии, как правило, можно предотвратить с помощью автоматических и ручных систем безопасности. Запроектные инциденты - спонтанные чрезвычайные ситуации, которые либо выводят из строя системы, либо вызваны внешними катализаторами. Такие аварии могут привести к выбросу радиации.

Слабые места современных АЭС

Поскольку атомная энергетика начала развиваться в прошлом столетии, то первой проблемой современных ядерных объектов называют изношенность оборудования. Большинство европейских АЭС построены ещё в 70–80 годы. Безусловно, при продлении сроков эксплуатации оператор тщательно анализирует состояние АЭС, меняет оборудование. Но полная модернизация техпроцеса требует огромным финансовых затрат, поэтому зачастую станции работают на основе старых методик. На таких АЭС нет надёжных систем предотвращения аварий. Строить АЭС с нуля тоже дорого, поэтому страны одна за другой продлевают сроки эксплуатации АЭС и даже перезапускают после простоя.

Вторыми по частоте возникновения чрезвычайных ситуаций идут технические ошибки персонала. Неверные действия могут привести к потере контроля над реактором. Чаще всего в результате халатных действий происходит перегрев и активная зона частично или полностью расплавляется. При определённых обстоятельствах в активной зоне может произойти пожар. Так случилось, например, в Великобритании в 1957 году в реакторе по производству вооружённого плутония. Персонал не уследил за показателями немногочисленных измерительных приборов реактора и пропустил момент, когда урановое топливо вступило в реакцию с воздухом и загорелось. Ещё один случай технической ошибки персонала - авария на АЭС «Святой Лаврентий». Оператор по невнимательности неправильно загрузил в реактор топливные сборки.

Бывают совсем уж курьёзные случаи - на реакторе «Браунз-Ферри» в 1975 году к пожару привела инициатива работника устранить протечку воздуха в бетонной стене. Работы он выполнял со свечкой в руках, сквозняк подхватил огонь и распространил по кабельному каналу. На устранение последствий аварии на атомной станции потратили ни много ни мало 10 млн долларов.

Самая крупная авария на ядерном объекте в 1986 году на Чернобыльской АЭС, а также известная крупная авария на АЭС «Фукусима» тоже случились из-за целого ряда ошибок технического персонала. В первом случае роковые ошибки были допущены во время проведения эксперимента, во втором имел место перегрев активной зоны реактора.

К сожалению, сценарий АЭС «Фукусима» не является редкостью для станций, где установлены такие же реакторы кипящей воды. Потенциально опасные ситуации могут возникать, поскольку все процессы, в том числе и главный процесс охлаждения, зависят от режима циркуляции воды. Если забился промышленный сток или деталь вышла из строя, реактор начнёт перегреваться.

С повышением температуры реакция деления ядра в тепловыделяющих сборках происходит интенсивнее, может начаться неконтролируемая цепная реакция. Ядерные стержни плавятся вместе с ядерным топливом (ураном или плутонием). Возникает аварийная ситуация, которая может развиваться по двум сценариям: а) расплавленное топливо прожигает корпус и защиту, попадая в грунтовые воды; б) давление внутри корпуса приводит к взрыву.

ТОП-5 аварий на АЭС

1. Долгое время единственной аварией, которую МАГАТЭ оценило в 7 баллов (худшее, что может случиться), оставался взрыв на ядерном объекте в Чернобыле. От лучевой болезни разной степени пострадали более 100 тысяч человек, а 30-километровая зона уже 30 лет остаётся безлюдной.

Расследованием аварии занимались не только советские физики, но и МАГАТЭ. Основной версией остаётся роковое стечение обстоятельств и ошибки персонала. Известно, что реактор работал внештатно и испытания в такой ситуации проводить не следовало. Но персонал решил работать по плану, сотрудники отключили исправные технологические системы защиты (они могли остановить реактор до входа в опасный режим) и начали тестирование. Позже эксперты пришли к выводу, что самаконструкция реактора была несовершенной, это тоже поспособствовало взрыву.

2. Авария на «Фукусиме-1» привела к тому, что территории в радиусе 20 километров от станции признали зоной отчуждения. Долгое время причиной инцидента считались землетрясение и цунами. Но позже японские парламентарии возложили ответственность за произошедшее на компанию-оператора Tokyo Electric Power, которая не обеспечила защиту АЭС. В результате аварии топливные стержни сразу на трёх реакторах полностью расплавились. Из района станции эвакуировали 80 тысяч человек. На данный момент в помещениях станции, которые обследуют исключительно роботы, остаются тоннырадиоактивных материалов и топлива, о чём ранее писали Пронедра.

3. В 1957 году на территории Советского Союза произошла авария на химическом комбинате «Маяк», известная как «Кыштымская». Причиной инцидента стал выход из строя системы охлаждения ёмкости с высокоактивными ядерными отходами. Бетонное перекрытие разрушило мощным взрывом. МАГАТЭ позже присвоило ядерному инциденту 6-й уровень опасности.

4. Пятую категорию получил Уиндскейлский пожар на станции в Великобритании. Авария случилась 10 октября того же 1957 года, что и взрыв на химкомбинате «Маяк». Точная причина аварии неизвестна. В то время у персонала отсутствовали контрольные приборы, поэтому следить за состоянием реактора было сложнее. В какой-то момент работники обратили внимание, что температура в реакторе растёт, хотя должна падать. При осмотре оборудования сотрудники с ужасом обнаружили в реакторе пожар. Тушить огонь водой сразу не решились в связи с опасениями, что вода будет мгновенно распадаться, а водород приведёт к взрыву. Перепробовав все подручные средства, персонал всё-таки открыл краны. К счастью, взрыва не произошло. По официальной информации, облучение получили около 300 человек.

5. Авария на АЭС «Три-Майл-Айленд» в США случилась в 1979 году. Она считалась самой крупной в истории американской атомной энергетики. Основной причиной инцидента стала поломка насоса второго контура охлаждения реактора. К аварийной ситуации привело всё то же стечение обстоятельств: поломка учётных приборов, отказ других насосов, грубые нарушения правил эксплуатации. Обошлось, к счастью, без жертв. Люди, проживающие в 16-километровой зоне, получили небольшое облучение (чуть больше, чем на сеансе флюорографии).

Оскал атомной энергии

Несмотря на то, что ядерная энергия реально обеспечивает человеку безуглеродистую энергию по разумным ценам, она же являет и свою опасную сторону в виде радиации и прочих бедствий. Международное агентство по атомной энергии оценивает аварии на ядерных объектах по специальной 7-ми бальной шкале. Самые серьезные события классифицируются высшей категорией - седьмой, в то время как 1-й уровень расценивается как незначительный. Отталкиваясь от этой системы оценки атомных катастроф, предлагаем список пяти самых опасных аварий на ядерных объектах мира.

1 место. Чернобыль. СССР (ныне Украина). Рейтинг: 7 (крупная авария)

Авария на ядерном объекте в Чернобыле всеми экспертами признана как самый худшая катастрофа в истории атомной энергетики. Это - единственная авария на ядерном объекте, которая была классифицирована Международным агентством по атомной энергии в качестве самого худшего, что может быть. Крупнейшая техногенная катастрофа разразилась 26 апреля 1986 года, на 4-м блоке Чернобыльской атомной электростанции, находящейся в маленьком городе Припять. Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. На момент аварии Чернобыльская АЭС была самой мощной в СССР. 31 человек погиб в течение первых трех месяцев после аварии; отдалённые последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек. 134 человека перенесли лучевую болезнь той или иной степени тяжести, более 115 тыс. человек из 30-километровой зоны были эвакуированы. В ликвидации последствий аварии участвовали более 600 тыс. человек. Радиоактивное облако от аварии прошло над европейской частью СССР, Восточной Европой и Скандинавией. Станция навсегда прекратила свою работу лишь 15 декабря 2000 года.


Чернобыль

«Кыштымская авария» - очень серьезная радиационная техногенная авария на химкомбинате «Маяк», расположенном в закрытом городе «Челябинск-40» (с 1990-х годов - Озёрск). Авария получила свое название Кыштымской по той причине, что Озёрск был засекречен и отсутствовал на картах до 1990 года, а Кыштым - ближайший к нему город. 29 сентября 1957 года из-за выхода из строя системы охлаждения произошёл взрыв ёмкости объёмом 300 кубических метров, где содержалось около 80 м³ высокорадиоактивных ядерных отходов. Взрывом, оцениваемым в десятки тонн в тротиловом эквиваленте, ёмкость была разрушена, бетонное перекрытие толщиной 1 метр весом 160 тонн отброшено в сторону, в атмосферу было выброшено около 20 млн кюри радиации. Часть радиоактивных веществ были подняты взрывом на высоту 1-2 км и образовали облако, состоящее из жидких и твёрдых аэрозолей. В течение 10-11 часов радиоактивные вещества выпали на протяжении 300—350 км в северо-восточном направлении от места взрыва (по направлению ветра). Более 23 тыс. квадратных километров оказались в загрязненной радионуклидами зоне. На этой территории находилось 217 населенных пунктов с более 280 тысячами жителей, ближе всех к эпицентру катастрофы было несколько заводов комбината «Маяк», военный городок и колония заключенных. Для ликвидации последствий аварии привлекались сотни тысяч военнослужащих и гражданского населения, получивших значительные дозы облучения. Территория, которая подверглась радиоактивному загрязнению в результате взрыва на химкомбинате, получила название “Восточно-Уральский радиоактивный след”. Общая длина составляла примерно 300 км, при ширине 5-10 км.

Из воспоминаний с сайта oykumena.org: «Мама стала болеть (были частые обмороки, малокровие)… Я родилась в 1959 году, были те же проблемы со здоровьем… Мы уехали из Кыштыма, когда мне было 10 лет. Я немного необычный человек. В течение жизни случались странные вещи… Предвидела катастрофу эстонского лайнера. И даже говорила о столкновении самолетов с приятельницей стюардессой… Она погибла».


3 место. Уиндскейлский пожар (Windscale Fire), Великобритания. Рейтинг: 5 (авария с риском для окружающей среды)

10 октября 1957 года операторы уиндскейлской станции заметили, что температура реактора неуклонно растет, в то время как должно происходить наоборот. Первым делом все подумали о неисправность оборудования реактора, осматривать которое отправились двое рабочих станции. Когда они добрались до самого реактора, то к своему ужасу увидели, что он был охвачен огнем. Поначалу, рабочие не использовали воды, потому что операторы станции высказывали опасения, что огонь настолько горяч, что вода будет будет распадаться мгновенно, а как известно водород в воде способен вызвать взрыв. Все испробованные средства не помогали, и тогда сотрудники станции открыли шланги. Слава Богу, вода смогла остановить огонь безо всякого взрыва. По некоторым оценкам, в Великобритании из-за Уиндскейла рак развился у 200 человек, половина из них умерли. Точное число жертв неизвестно, поскольку британские власти пытались скрыть эту катастрофу. Премьер-министр Гарольд Макмиллан опасался, что этот инцидент мог подорвать общественную поддержку ядерным проектам. Проблема подсчета жертв этой катастрофы усугубляется еще тем, что излучение от Уиндскейла распространилось на сотни км по всей северной Европе.


Уиндскейл

4 место. ТриМайл Айленд (Three Mile Island), США. Рейтинг: 5 (авария с риском для окружающей среды)

До Чернобыльской аварии, случившейся через семь лет, авария на АЭС «Три-Майл Айленд» считалась крупнейшей в истории мировой ядерной энергетики и до сих пор считается самой тяжёлой ядерной аварией в США. 28 марта 1979 года рано утром произошла крупная авария реакторного блока № 2 мощностью 880 МВт (электрических) на АЭС "Тримайл-Айленд", расположенной в двадцати километрах от города Гаррисберга (штат Пенсильвания) и принадлежавшей компании "Метрополитен Эдисон". Блок No 2 на АЭС "Тримайл-Айленд", как оказалось, не был оснащен дополнительной системой обеспечения безопасности, хотя подобные системы на некоторых блоках этой АЭС имеются. Несмотря на то, что ядерное топливо частично расплавилось, оно не прожгло корпус реактора и радиоактивные вещества, в основном, остались внутри. По разным оценкам, радиоактивность благородных газов, выброшенных в атмосферу составила от 2,5 до 13 миллионов кюри, однако выброс опасных нуклидов, таких как йод-131, был незначительным. Территория станции также была загрязнена радиоактивной водой, вытекшей из первого контура. Было решено, что в эвакуации населения, проживавшего рядом со станцией нет необходимости, однако власти посоветовали покинуть 8-километровую зону беременным женщинам и детям дошкольного возраста. Официально работы по устранению последствий аварии были завершены в декабре1993 года. Была проведена дезактивация территории станции, топливо было выгружено из реактора. Однако, часть радиоактивной воды впиталась в бетон защитной оболочки и эту радиоактивность практически невозможно удалить. Эксплуатация другого реактора станции (TMI-1) была возобновлена в 1985 году.


ТриМайл Айленд

5 место. Токаимура (Tokaimura), Япония. Рейтинг: 4 (авария без значительного риска для окружающей среды)

30 сентября 1999 года произошла самая страшная атомная трагедия для Страны восходящего Солнца. Самая пагубная авария на ядерном объекте Японии имела место более десятилетия тому назад, правда это было за пределами Токио. Для ядерного реактора, который не использовался более трех лет была подготовлена партия высокообогащенного урана. Операторов станции не обучили тому, как надо обращаться со столь высокобогащенным ураном. Не понимая, что они делают в смысле возможных последствий, «специалисты» поместили гораздо больше урана в резервуар, чем нужно. Более того, резервуар реактора был разработан не для этого типа урана. ...Но критическую реакцию уже не остановить и двое из трех операторов, работавших тогда с ураном умирают от радиации. После катастрофы около сотни рабочих и тех, кто жил поблизости были госпитализированы с диагнозом «облучение», эвакуации подлежали 161 человек, живших в нескольких сотнях метров от атомной станции.


29 марта 2018 года произошла авария на атомной станции в Румынии. Хотя компания, занимающаяся эксплуатацией станции, сообщила, что проблема была связана с электроникой и не имеет никакого отношения к энергоблоку, это событие заставило многих вспомнить об инцидентах, которые не только унесли человеческие жизни, но и стали причиной серьезных экологических катастроф. Из этой статьи вы узнаете, какие аварии на атомных станциях принято считать самыми крупными в истории нашей планеты.

АЭС Чолк-Ривер

Первая в мире крупная авария на произошла в декабре 1952 года в штате Онтарио, Канада. Она стала следствием технической ошибки обслуживающего персонала АЭС Чолк-Ривер, в результате которой произошел перегрев и частичное расплавление его активной зоны. Окружающая среда была загрязнена радиоактивными продуктами. Кроме того, неподалеку от реки Оттавы произошел сброс 3800 кубометров воды, содержащей опасные примеси.

Колдер Холл, расположенная на северо-западе Англии, была построена в 1956 году. Она стала первой АЭС, эксплуатирующейся в капиталистической стране. 10 октября 1957 года там проводились плановые работы по отжигу графитовой кладки. Этот процесс осуществлялся для высвобождения аккумулированной в ней энергии. Из-за отсутствия необходимых контрольно-измерительных приборов, а также ошибок, допущенных персоналом, процесс стал неконтролируемым. Слишком мощное энерговыделение привело к реакции с воздухом металлического уранового топлива. Начался пожар. Первый сигнал о десятикратном повышении уровня радиации на расстоянии в 800 м от активной зоны поступил 10 октября в 11:00.

Через 5 часов был произведен осмотр топливных каналов. Специалисты обнаружили, что часть твэлов (емкостей в которых происходит деления радиоактивных ядер) раскалились до температуры 1400 °C. Их выгрузка оказалась невозможной, поэтому к вечеру огонь перекинулся по остальным каналам, содержащим в общей сложности примерно 8 тонн урана. Ночью персонал попытался охладить активную зону, используя углекислый газ. Утром 11 октября было принято решение о затоплении водой реактора. Это позволило к 12 октября перевести реактор АЭС в холодное состояние.

Последствия аварии на станции Колдер Холл

Активность выброса большей частью пришлась на радиоактивный изотоп йода искусственного происхождения, который имеет период полураспада равный 8 суткам. Всего по подсчетам ученых в окружающую среду попало 20 000 кюри. Долгосрочное заражение было следствием присутствия вне реактора радиоцезия с радиоактивностью в 800 кюри.

К счастью, никто из персонала не получил критическую дозу облучения и обошлось без жертв.

Ленинградская АЭС

Аварии на происходят намного чаще, чем мы думаем. К счастью, большинство из них не связаны с выбросом в атмосферу такого количества радиоактивных веществ, чтобы представлять серьезную опасность для здоровья людей и экологии.

В частности, на Ленинградской атомной электростанции, действующей с 1873 года (начало строительства - 1967 год), в течение 40 последних лет происходило немало аварий. Самой серьезной из них была внештатная ситуация, произошедшая 30 ноября 1975 года. Она была вызвана разрушением топливного канала и привела к радиоактивным выбросам. Эта авария на атомной станции, расположенной всего в 70 км от исторического центра Санкт-Петербурга, высветила конструктивные недостатки советских реакторов РБМК. Однако урок прошел даром. Впоследствии многие специалисты назвали катастрофу на ЛАЭС предтечей аварии на атомной станции в Чернобыле.

Эта атомная станция, расположенная в американском штате Пенсильвания, была запущена в 1974 году. Спустя 5 лет там произошла одна из серьезнейших в истории США.

Причиной аварии на атомной станции на острове Три-Майл-Айленд стало сочетание нескольких факторов: технических неисправностей, нарушения правил эксплуатации и проведения ремонтных работ и ошибок персонала.

В итоге всего вышеперечисленного произошло повреждение активной зоны атомного реактора, в том числе части топливных урановых стержней. В целом, расплавилось около 45 % ее компонентов.

Эвакуация

30-31 марта началась паника среди жителей окрестных населенных пунктов. Они стали уезжать целыми семьями. Власти штата приняли решение об эвакуации людей, проживающих в радиусе 35 км от АЭС.

Панические настроения подогревались тем, что эта авария на атомной станции в США совпала с показом в кинотеатрах фильма «Китайский синдром». Картина рассказывала о катастрофе на вымышленной АЭС, которую власти всеми силами пытаются скрыть от населения.

Последствия

К счастью, в результате этой аварии не произошло расплавления реактора и/или выброса в атмосферу катастрофического количества радиоактивных веществ. Сработала система безопасности, представляющая собой гермооболочку, в которую был заключен реактор.

В результате аварии никто не получил серьезных повреждений, большой и не погиб. Выброс радиоактивных частиц был признан незначительным. Тем не менее эта авария вызвала широкий резонанс в американском обществе.

В Соединенных Штатах началась антиядерная кампания. Под натиском ее активистов со временем властям пришлось отказаться от строительства новых энергоблоков. В частности, были законсервированы 50 из строившихся на тот момент в США объектов атомной энергетики.

Устранение последствий

Для полного завершение работ по устранению последствий аварии потребовалось 24 года и 975 миллионов долларов США. Это в 3 раза превысило страховку. Специалистами была проведена дезактивация рабочих помещений и территории АЭС, ядерное топливо выгрузили из реактора, аварийный второй энергоблок был закрыт навсегда.

АЭС Сен-Лоран-дез-О (Франция)

Эта атомная станция, расположенная на берегу Луара в 30 км от Орлеана, была введена в эксплуатацию в 1969 году. Авария произошла в марте 1980 года на 2-м блоке АЭС, мощностью 500 МВт, действующем на природном уране.

В 17 часов 40 минут реактор станции автоматически «вырубился» из-за резкого повышения радиоактивности. Как впоследствии было выяснено экспертами и инспекторами МАГАТЭ, коррозия конструкции топливных каналов привела к расплавлению 2 твэлов, в которых было в общей сложности 20 кг урана.

Последствия

На очистку реактора потребовалось 2 года 5 месяцев. Для проведения этих работ были привлечены 500 человек.

Аварийный блок SLA-2 был восстановлен и вернулся в строй лишь в 1983 году. Однако но его мощность ограничили до 450 МВт. Окончательно блок закрыли в 1992 году, так как эксплуатация этого объекта была признана экономически нецелесообразной и постоянно становилась причиной протестных акций представителей французских экологических движений.

Авария на Чернобыльской атомной станции в 1986 году

АЭС, расположенная в городе Припять, расположенном на границе Украинской и Белорусской ССР, начала эксплуатироваться в 1970 году.

Года глубокой ночью на 4-м энергоблоке произошел сильнейший взрыв, полностью разрушивший реактор. В результате частично разрушилось также здание энергоблока и кровля машинного зала. Возникло около трех десятков очагов пожара. Крупнейшие из них были на крыше машинного зала и реакторного отделения. Оба к 2 часам 30 минутам подавили пожарные. К утру очагов возгорания уже не осталось.

Последствия

В результате Чернобыльской аварии произошел выброс до 380 млн кюри радиоактивных веществ.

Во время взрыва на 4-м энергоблоке станции погиб один человек, еще один сотрудник АЭС скончался утром после аварии от полученных травм. На следующий день 104 пострадавших были эвакуированы в больницу №6 города Москвы. Впоследствии у 134 сотрудников станции, а также у некоторых членов спасательных и пожарных команд, была диагностирована лучевая болезнь. Из них 28 умерли в течение следующих месяцев.

27 апреля эвакуировали все население города Припять, а также жителей населенных пунктов, расположенных в 10-километровой зоне. Затем зона отчуждения была увеличена до 30 км.

2 октября того же года было начато строительство города Славутича, в котором расселили семьи сотрудников Чернобыльской АЭС.

Дальнейшие работы по смягчению опасной ситуации в районе Чернобыльской катастрофы

26 апреля в разных частях центрального зала аварийного блока вновь возник пожар. Из-за тяжелой радиационной обстановки его подавление штатными средствами не осуществлялось. Для ликвидации возгорания использовалась вертолетная техника.

Была создана правительственная комиссия. Основную часть работ выполнили в течение 1986-1987 годов. Всего в ликвидации последствий аварии на АЭС в Припяти приняли участие более 240 000 военнослужащих и гражданских лиц.

В первые дни после аварии основные усилия предпринимались с целью снижения радиоактивных выбросов и предотвращения усугубления и без того опасной радиационной ситуации.

Консервация

Было принято решение о захоронении разрушенного реактора. Этому предшествовала очистка территории АЭС. Затем обломки с крыши машинного зала убрали внутрь саркофага либо залили бетоном.

На следующем этапе работ вокруг 4-го блока возвели бетонный«саркофаг». Для его создания использовалось 400 000 кубометров бетона, а также были смонтированы 7 тысяч тонн металлоконструкций.

Авария на атомной станции Фукусима в Японии

Эта масштабная катастрофа произошла в 2011 году. Авария на атомной станции Фукусима стала второй после Чернобыля, которой присвоили 7-й уровень по интернациональной шкале ядерных событий.

Уникальность этой аварии заключается в том, что ей предшествовало землетрясение, признанное сильнейшим в истории Японии, и разрушительное цунами.

В момент толчков энергоблоки станции были автоматически остановлены. Однако последовавшее цунами, сопровождавшееся гигантскими волнами и сильным ветром, привело к отключению электроснабжения АЭС. В этой ситуации во всех реакторах стало резко повышаться давление пара, так как отключилась система охлаждения.

Утром 12 мая на 1-м энергоблоке АЭС произошел сильный взрыв. Уровень радиации сразу же резко возрос. 14 марта то же произошло на 3-м энергоблоке, а на следующий день — на втором. С АЭС эвакуировали весь персонал. Там осталось лишь 50 инженеров, которые вызвались предпринять меры для недопущения более серьезной катастрофы. Позже к ним присоединилось еще 130 солдат сил самообороны и пожарных, так как над 4-м блоком появился белый дым, и были опасения, что там начался пожар.

Во всем мире возникла озабоченность по поводу последствий аварии в Японии на атомной станции «Фукусима».

11 апреля АЭС сотрясло еще одно 7-балльное землетрясение. Вновь отключилось энергоснабжение, но это не создавало дополнительных проблем.

В середине декабря 3 проблемных реактора были переведены в состояние холодной остановки. Тем не менее в 2013 году на станции произошла серьезная утечка радиоактивных веществ.

На данный момент, по заявлению японских специалистов, в окрестностях Фукусимы радиационный фон сравнялся с природным. Однако еще неизвестно, какими будут последствия аварии на атомной станции для здоровья будущих поколений японцев, а также представителей тихоокеанской флоры и фауны.

Авария на АЭС в Румынии

А теперь вернемся к информации, с которой начали эту статью. Авария в Румынии на атомной станции стала следствием неисправности в электрической системе. Инцидент не оказал никакого отрицательного воздействия на здоровье персонала АЭС и жителей близлежащих населенных пунктов. Однако это уже второе чрезвычайное происшествие на станции в Чернаводэ. 25 марта там отключился 1-й блок, а 2-й работал лишь на 55 % от своей мощности. Эта ситуация вызвала озабоченность и у премьер-министра Румынии, которая поручила расследовать эти инциденты.

Теперь вам известны самые серьезные катастрофы на АЭС в истории человечества. Остается надеяться, что этот список не будет пополнятся, и в него никогда больше не внесут описание какой-либо аварии атомной станции в России.

При работе АЭС должны согласованно действовать множество устройств и механизмов. Это похоже на работу автомобиля. Если вдруг в нем откажут тормоза или перестанут в темноте гореть габаритные огни, если перестанет переключаться коробка передач или в бензобак попадет вместе с бензином вода, если заклинит руль или проколется шина… и так далее и тому подобное. Во всех этих случаях автомобиль либо перестает работать, либо с ним произойдет авария.

В случае с реактором АЭС таких причин гораздо больше, чем на автомобиле. Представьте себе, что в реакторе перестали работать насосы, которые прокачивают через активную зону охлаждающую жидкость или отказали механизмы перемещения стержней, которые поглощают нейтроны, прорвались или закупорились трубы, по которым течет охлаждающая жидкость. Могут испортиться исполнительные механизмы или контрольные приборы, может ошибиться усталый оператор и нажать не на ту кнопку. И так далее и тому подобное. Эти события могут произойти вследствие весьма различных причин. Например, авария на американской АЭС «Браунс Ферри» в 1975 году началась с того, что какой-то рабочий решил подсветить себе в одном из подвальных помещений и зажег свечу. Возникший затем пожар затруднил возможность участия операторов в управлении работой энергоблоков АЭС и привел к выбросу радиоактивных отходов в атмосферу.

Вышедший из под контроля реактор перегревается, так как тепло продолжает выделяться, но не отводится охлаждающей жидкостью. Причем в реакторе существуют положительная обратная связь между, например, объемом образовавшегося в трубах пара и мощностью тепловыделения. Чем больше объем пара, теплопроводность которого хуже чем у воды, тем быстрее нагревается рабочая зона реактора. Чем меньший объем воды в рабочей зоне, тем меньше поглощается нейтронов, и тем быстрее начинают делиться ядра. Мощность реактора при аварии на Чернобыльской АЭС по оценкам специалистов примерно в 100 раз превысила проектную! Представьте себе, что вы бросили в костер жестяную банку с консервами и забыли вовремя ее оттуда вытащить. Что произойдет через некоторое время? Правильно, банка взорвется, так как прочности стенок не хватит, чтобы сдержать давление водяного пара внутри банки.

Нельзя исключать вероятности таких событий, как падение самолета или метеорита на АЭС. В нынешнее время не исключена возможность диверсий со стороны террористов.

Какое количество радиоактивных отходов будет выброшено в результате аварии на энергоблоке зависит от того, на какой стадии развития неуправляемого взрыва, удалось сбросить избыточное внутреннее давление и заглушить реактор.

Температура установленных в циркониевых трубах урановых стержней выросла до нескольких тысяч градусов, и охлаждающая их вода мгновенно превратилась в пар. В условиях высокой температуры цирконий вступил в реакцию с водой - выделился водород. Это усугубило аварию. Грянул взрыв. Он порвал, словно гнилые нитки, две тысячи стальных и циркониевых труб и коммуникаций, соединявших активную зону с верхним перекрытием реактора, и «выстрелил» в звездное небо этой полуторатысячетонной плитой. Оторванная стальная махина на мгновение зависла над чревом развороченного реактора, медленно повернулась и рухнула ребром в помещении центрального зала на остатки реактора, выдавив из него обломки конструкции активной зоны и все прочее…

Брызнувшие в разные стороны обломки урановых топливных стержней, труб и куски графита, разогретые до тысячи градусов, от соединения с кислородом воздуха вспыхнули бенгальским огнем и посыпались на крышу соседнего турбинного зала…».

В результате этого теплового взрыва перегретого реактора в атмосферу сразу были выброшены тонны испарившегося урана, газообразных продуктов деления и активации. Пожар привел к сгоранию десятков тонн материалов, которые подверглись радиоактивному облучению. Пепел и другие продукты горения были разнесены ветром по всей Европе.

Что явилось причиной Чернобыльской аварии?

Авария на станции была запланированным экспериментом, правда, те, кто планировал эксперимент, не предполагали такого его исхода. Эксперимент предполагал создание условий искусственно имитирующих аварию. Его авторы хотели детально изучить один из критических режимов работы реактора в условиях отключения внешнего электропитания для насосов, обеспечивающих прокачку охлаждающей жидкости через рабочую зону реактора. Предполагалось, что кинетической энергии вращающихся по инерции турбин генераторов хватит на то, чтобы выработать достаточную электрическую мощность для электропитания насосов на время, за которое все управляющие механизмы реактора успеют его заглушить. Не успели …

При проведении этого действительно дурацкого эксперимента операторы АЭС специально отключали все автоматические блокировки, препятствовавшие отключению насосов и запрещавшие выведение стержней из материалов, которые захватывают нейтроны.

Собственная глупость является для человека самым страшным врагом, поскольку от него нет защиты.

Аварии на АЭС.

Менее чем за полувековую историю развития ядерной энергетики крупные аварии на АЭС происходили не раз. Первые из известных -- в 1957 году в Великобритании и в СССР, далее в 1979 году -- в США и в 1986 году снова в СССР. Всего же в мире произошло около 400 ядерных инцидентов и аварий различной степени сложности и опасности.

Во время профилактических работ на одном из реакторов, производящем плутоний для британского ядерного оружия, загорелись три тонны урана. В результате пожара произошел выброс радиации. Радиоактивное облако накрыло половину Европы: часть достигла Норвегии, другая часть -- Швейцарии. Последствия аварии тщательно скрывались. Только по истечении 30 лет стали известны некоторые подробности.

В результате взрыва емкости с радиоактивными отходами тысячи квадратных километров были загрязнены радиацией. Подхваченное ветром, радиоактивное облако разнеслось по площади более 20 тыс. кмІ Челябинской, Свердловской и Тюменской областей. Территория, подвергшаяся радиационному загрязнению в результате аварии, позднее получила название «Восточно-Уральский радиоактивный след» (ВУРС). Этот след существует до сих пор. В 1957 в зоне ВУРС проживали 270 тыс. человек. До середины 70-х годов информация об аварии тщательно скрывалась. Тогда с карт исчезли названия более 30 деревень. Но жители некоторых из них …остались.

Из-за ошибок персонала произошло частичное расплавление активной зоны реактора. Это вызвало выброс радиоактивных газов в атмосферу и жидких радиоактивных отходов в реку Сукуахана. Из зоны бедствия было эвакуировано 3 500 человек.

Взрыв 4 энергоблока Чернобыльской АЭС -- крупнейшая ядерная катастрофа гражданской атомной индустрии. Радиационному воздействию подверглось 5 миллионов человек.

30 сентября 1999. Завод по переработке ядерного топлива Tokaimura (неподалеку от Токио, Япония).

По вине сотрудников предприятия началась неуправляемая ядерная реакция, которую не удалось вовремя остановить. Прилегающие районы подверглись сильному радиоактивному заражению. Двое сотрудников предприятия погибли. Более 400 человек получили сильные дозы радиации.

Тысячи людей по всему миру страдают от последствий радиоактивного загрязнения из-за аварий на предприятиях атомной индустрии. При этом последствия многих ядерных инцидентов и аварий тщательно скрывались и до сих пор скрываются, т.к. политика секретности, сопровождавшая разработку атомной бомбы, распространилась и на проекты по развитию «мирного» атома. И вместо того, чтобы обеспечить должный уровень охраны ядерных объектов и наладить систему оповещения населения о возможной аварии, власти снабжали людей очередными порциями лжи.

АЭС, как и любой другой технологический объект, очень уязвимы. Никто не может дать стопроцентной гарантии, что катастрофа подобная чернобыльской, больше не повторится. А с учетом обострения проблемы международного терроризма, вероятность крупных ядерных аварий только возросла. После взрывов жилых домов в Москве, Норд-Оста, Беслана никто не может гарантировать, что следующей целью террористов не станет ядерный объект.

Программы физической защиты ядерных объектов не обеспечивают их безопасность на необходимом уровне. Например, в феврале 2002 года депутату Госдумы С.С. Митрохину вместе с журналистами НТВ и представителем Гринпис удалось беспрепятственно проникнуть на территорию хранилища отработавшего ядерного топлива в городе Железногорске (Красноярский край).

Приходится учитывать и высокий уровень наркомании, алкоголизма и преступности в «закрытых городах» (ЗАТО). Это еще больше увеличивает риск аварии, а также возможности кражи и сбыта ядерных материалов.

На северо-востоке главного японского острова Хонсю и в 250км Токио произошло самое мощное в современной истории Японии землетрясение магнитудой 8,9. За ним на побережье острова обрушилось цунами. 11 марта цунами повредило систему энергоснабжения атомной станции «Фукусима-1». На оставшейся без системы охлаждения станции произошло несколько взрывов водорода с последующими радиоактивными выбросами, которые «накрыли» значительную территорию. Известно, что повышенный радиационный фон наблюдался в Токио. Вблизи самой станции уровень радиации достигал несколько сотен миллизивертов в час (при таком уровне в течение двух часов появляются признаки лучевой болезни).

Авария на АЭС «Фукусима-1». Хроника событий.

Многие эксперты склоняются к мнению, что авария на АЭС «Фукусима-1» вызвана не только землетрясением, как единственной причиной, факты говорят, что сама станция достаточно успешно выдержала сейсмические толчки. Однако проблема была в том, что тут произошло наложение двух стихийных бедствий, что и привело к такой масштабной катастрофе. Хотя официальное расследование причин аварии еще не завершено - ее выводы будут готовы только к концу года, предварительные выводы показывают, что землетрясение было причиной потери внешнего энергоснабжения. После этого, как и полагалось, были запущены дизель - генераторы, но их работа нарушилась пришедшим цунами.

Причины аварии.

Таким образом, наложение двух катастрофических событий еще более усугубило и без того сложную ситуацию на АЭС. Станция не выдержала воздействия стихий, по причине того, что была построена еще в 1970 году. Ее проект, с современной точки зрения, уже устарел, и у нее не было средств управления авариями, выходящими за пределы проекта. Результатом неготовности станции было то, что следствием наложения двух аварийных ситуаций - потери внешнего снабжения и отказа дизель - генераторов, было расплавление активной зоны реактора. При этом образовывался радиоактивный пар, который персонал вынужденно сбрасывал в атмосферу. А взрыв выделившегося при этом водорода показал, что на станции не было средств его контроля и подавления, или их было недостаточно.

Все три работавшие до аварии энергоблока остались без достаточного охлаждения, следствием этого, стало снижение уровня теплоносителя, а создаваемое образующимся паром давление, стало резко повышаться. Катастрофическое развитие событий начало развиваться с энергоблока №1. Персонал, для того, чтобы избежать повреждения реактора высоким давлением, стал сбрасывать пар сначала в гермооболочку, а это привело к тому, что в ней давление увеличилось более чем в два раза. Теперь же, чтобы сохранить гермооболочку, пар стали сбрасывать в атмосферу, при этом ответственные организации заявили, что из выбрасываемого пара будут отфильтровываться радионуклиды. Таким образом, удалось сбросить давление в гермооболочке. Но при этом, водород, образовавшийся по причине оголения топлива и окисления оболочки тепловыделяющих элементов, изготовленной из циркония, проник в обстройку реакторного отделения. Высокая температура и концентрация пара привели к последующему взрыву водорода в первом энергоблоке АЭС. Это событие произошло на следующий после землетрясения день, 12 марта утром в 6:36 по всемирному координированному времени (UTC). Последствием взрыва, было разрушение части бетонных конструкций, при этом, корпус реактора не был поврежден, была повреждена только внешняя железобетонная оболочка.

Развитие событий.

Сразу после взрыва произошло сильное повышение уровня радиации, достигшее более 1000 мкЗв/час, но через несколько часов, уровень радиации упал до 70,5 мкЗв/час. Передвижные лаборатории, взявшие пробы на территории АЭС, показали наличие цезия, что могло указывать на нарушение герметичности оболочек тепловыделяющих элементов. Правительство Японии в полдень этого же дня, подтвердило, что действительно произошла утечка радиации, но о масштабах не сообщалось. Впоследствии, официальные лица, как из правительства, так и из компании TEPCO, в чьем ведении находится АЭС, заявили, что для охлаждения реактора, в его гермооболочку будет закачиваться морская вода, смешанная с борной кислотой, а по некоторым сведениям, воду будут закачивать и в сам реактор. По официальной версии, водород просочился в пространство между стальной оболочкой и бетонной стеной, там смешавшись с воздухом, он и взорвался.

На следующий день, на АЭС «Фукусима-1» начались проблемы с блоком № 3. У него оказалась поврежденной система аварийного охлаждения, которая должна была подключиться при понижении уровня теплоносителя ниже заданного. Так же, предварительные данные говорили, что тепловыделяющие элементы частично оголились, поэтому опять возникла угроза взрыва водорода. Начался контролируемый сброс пара из гермооболочки, для снижения давления. Так как не было возможности охлаждения реактора блока №3 в него, тоже, начали закачку морской воды.

Однако, принятые меры, не помогли избежать взрыва на третьем энергоблоке. Утром 14 марта на этом блоке прогремел взрыв аналогичный взрыву на первом энергоблоке. При этом и корпус реактора, и гермооболочка не пострадали. Персонал стал восстанавливать аварийное энергоснабжение на 1 и 2 блоках, а подкачка морской воды осуществлялась на 1 и 3 блоки. В дальнейшем, в этот день отказала система аварийного охлаждения и на втором энергоблоке. TEPCO сообщила, что на этом блоке принимаются такие же меры, как на 1 и 3 блоках. Во время закачки морской воды во 2 блок, отказал предохранительный клапан для сброса пара, давление возросло, и закачка воды стала невозможной. Из-за временного полного оголения активной зоны, часть тепловыделяющих элементов повредилась, но впоследствии удалось восстановить функцию клапана, и возобновить подачу морской воды.

На этом беды АЭС не закончились. На следующее утро прогремел взрыв и на втором энергоблоке, результатом которого был выход из строя блока для конденсации пара, выходящего из реактора при авариях. Так же, возможно, была повреждена гермооболочка. В это же время прогремел взрыв в хранилище отработанного ядерного топлива на блоке №4, но пожар удалось потушить за 2 часа. Персонал со станции, из-за возросшего уровня радиации, пришлось эвакуировать, осталось только 50 инженеров.

Утром 17 марта начался сброс морской воды с вертолетов в бассейны 3 и 4 энергоблоков, для устранения возможного повреждения отработавшего топлива. Два вертолета сделав по 4 рейса, попытались наполнить бассейны водой. В дальнейшем из-за масштабов повреждений и широкого фронта работ, перед штабом по ликвидации аварии встает сложная задача по выбору приоритетных работ. Морскую воду нужно закачивать в первые четыре энергоблока, при этом, основной персонал нужен на 5 и 6 блоках, для поддержания их в нормальном состоянии. Все это осложнялось очень высоким уровнем радиации, особенно во время сброса пара, при котором люди должны уходить в укрытие. Поэтому было решено увеличить количество персонала на промплощадке до 130 человек, в числе которых были и солдаты. Удалось восстановить дизельную электростанцию 6 блока, и, ее стали использовать для подачи воды, так же и на 5 энергоблок.

На восьмой день, после разрушительного землетрясения, у АЭС было развернуто пожарное спецподразделение, в арсенале которого были мощные автомобили. С их помощью в бассейн отработанного топлива 3 энергоблока заливается вода. В то же время, на крышах 5 и 6 блока просверлили небольшие отверстия, чтобы предотвратить скопление водорода. На следующий день 20 марта, по плану, было намечено восстановление электроснабжения 2 блока АЭС.

Ликвидация.

В конце марта возникла необходимость в откачке воды из затопленных турбинных отделений 1,2 и 3 блоков. Если этого не сделать, то восстановление электроснабжения будет невозможно, да и штатные системы не смогут функционировать. Учитывая размеры затопленных помещений, ликвидаторы затруднялись говорить о сроках выполнения этих работ, при этом, конденсаторы турбин, куда планировалось закачивать эту воду, были заполнены, значит, предварительно надо было куда-то откачать воду и из них. Активность воды в турбинных отделениях указывала на то, что гермооболочки первых трех блоков имеют утечку радиоактивной воды. В турбинных отделениях стоит высокий уровень радиации, что значительно тормозит аварийные работы.

Состояние всех реакторов остается относительно стабильным, в них с помощью электронасоса подается пресная вода. Давление в гермооболочках 1,2 и 3 блоков постепенно входит в норму. TEPCO приняла решение соорудить очистные сооружения рядом с аварийными блоками, чтобы решить проблему затопленных помещений. Ведутся подготовительные работы для того, чтобы откачать воду из конденсаторов, в специальные баки для хранения конденсата, а из них в другие емкости.

Начало апреля ознаменовалось тем, что ликвидаторы обнаружили в бетонном канале для прокладки электрокабелей, находящемся на глубине 2 метров, высокоактивную воду. Помимо этого, в стене кабельного канала обнаружили трещину шириной 20 см. Несколько попыток залить трещину бетоном не увенчались успехом, так как вода не давала бетону затвердеть. После этого попробовали заделать трещину специальным полимерным составом, но эта попытка тоже оказалась неудачной. Чтобы не тратить время на эту работу, сотрудники решили удостовериться в том, что именно через эту трещину радиоактивная вода попадает в море, но проведенное исследование опровергло это предположение. Попытки заделать трещину все равно продолжились, а в случае их неудачи, было решено укрепить химическими веществами землю в районе течи.

2 апреля временные электронасосы, подающие воду в гермооболочки первых трех блоков, переключили с мобильных установок на внешнее электропитание. Из конденсатора 2 блока началась откачка воды в баки хранения, для последующей закачки воды в конденсатор, из подвальных помещений энергоблока. TEPCO заявила, что вынуждена сбросить в море 10 тысяч тонн низкорадиоактивной воды в море, чтобы освободить штатное хранилище для закачки высокорадиоактивной воды из 1,2 и 3 блоков. Правительство Японии разрешило пойти на такие меры, тем более, как сообщалось, этот сброс не угрожает здоровью людей живущих неподалеку от АЭС.

Удалось заделать течь из канала для электрокабелей. В гермооблочку первого блока был закачан азот для вытеснения водорода, во избежание возникновения взрывоопасной концентрации. По-прежнему, остро стоит вопрос с закачкой воды в хранилища, их объемов явно не хватает, поэтому по просьбе TEPCO, в район аварии направили технический «остров» «Mega-Float», который рассчитан на 10000 тонн воды. По прибытию к месту назначения, его переоборудовали, приспособив для хранения радиоактивной воды. Кроме того, компания собирается строить в районе станции временные хранилища для радиоактивной воды.

В середине апреля мощные афтершоки и 7 - бальное землетрясение, не помешали ходу аварийных работ, однако, некоторые операции пришлось отложить. Из сооружений 2 блока началась откачка воды. В бассейне выдержки 4 блока поднялась температура, и туда было решено закачать 195 тонн воды для его охлаждения. Снизился уровень загрязнения морской воды иодом-131, однако в радиусе 30 км от станции, уровень радиации морской воды еще значительно выше допустимого и, чем ближе к станции, тем он выше. TEPCO, для исключения повторной утечки воды, решила соорудить стальные плиты, полностью отгородившие от моря, водозаборы технической воды.

В середине апреля TEPCO объявила, что утвержден новый план ликвидации аварии. По этому плану компания намеревается соорудить замкнутую систему, состоящую из насосов, для откачки воды из помещений, с последующей ее фильтрацией и очисткой, и ее дальнейшим охлаждением. Впоследствии, очищенную воду можно будет использовать для охлаждения реакторов. Благодаря этому, не придется сбрасывать воду в хранилища, ее объем не будет увеличиваться. На работы по монтажу этой системы уйдет около 3 месяцев, а в течение полугода ликвидация аварии должна быть завершена.

Параллельно с этими работами, с помощью техники управляемой дистанционно, убирается территория станции. С 20 апреля над промплощадкой началось полномасштабное распыление химреагентов, для осаждения пыли. Эти реагенты связывают пыль в более крупные частицы, и, она оседает недалеко от места аварии, не уносясь ветром. В конце апреля TEPCO начала подготовку к новому этапу охлаждения реакторов.

Последствия аварии.

В результате всех этих инцидентов на АЭС «Фукусима-1» возникла утечка радиации, как по воздуху, так и по воде, поэтому властям пришлось эвакуировать население из зоны радиусом 20 км от станции. Кроме того, в зоне отчуждения людям было запрещено находиться, а людям, живущим в радиусе 30 км от станции, было настоятельно рекомендовано согласиться на эвакуацию. Немного позже, появилась информация, о том, что в некоторых районах Японии обнаружены радиоактивные элементы изотопов цезия и йода. Через две недели после аварии в питьевой воде некоторых префектур был обнаружен радиоактивный йод - 130, однако его концентрация была ниже допустимой. В тот же период в молоке и некоторых продуктах были обнаружены радиоактивные йод - 131 и цезий - 137, и хотя их концентрация не была опасна для здоровья, их употребление временно запретили.

В этот же период в пробах морской воды, взятых в пределах 30 - километровой зоны станции, было обнаружено повышенное содержание йода - 131, и незначительное присутствие цезия - 137. Однако, в дальнейшем, из-за утечки из реакторов радиоактивной воды, концентрация этих веществ в морской воде сильно повысилась и временами достигала концентрации в несколько тысяч раз, превышающей допустимую. Кроме этого, в конце марта в пробах почвы взятых на промплощадке обнаружили незначительную концентрацию плутония. В это же время, во многих регионах планеты, в том числе и в Западной Европе и США, было отмечено присутствие, нехарактерных для этих местностей, радиоактивных веществ. Многие страны временно запретили ввоз продуктов из некоторых префектур Японии.

В финансовом отношении авария на «Фукусиме-1», тоже имеет тяжелые последствия, особенно для Японии и, в частности, для владельца АЭС - компании TEPCO. Атомная отрасль тоже понесла значительный урон, например, после аварии резко снизились котировки уранодобывающих компаний и упали спотовые цены на сырье для атомных электростанций. По оценкам экспертов, постройка новых АЭС, после аварии в Японии, возрастет на 20 - 30%. Компания TEPCO, по требованию правительства Японии, обязана выплатить компенсации для 80 тысяч человек, пострадавших от последствий аварии, сумма выплат может достичь $130 млрд. Сама же компания - владелец АЭС потеряла $32 млрд своей рыночной стоимости, из-за снижения цены своих акций. И хотя АЭС и была застрахована на несколько миллионов долларов, этот случай, по договору не подпадает под категорию «страхового».

В самом конце 18 века было открыто радиоактивное излучение, после чего началось активное исследование этого явления. Уже в 1901 году впервые применили облучение в медицинских целях. Спустя 30 лет стали задумываться о разработке ядерного оружия. Первые заводы по производству плутония заработали в 1944 году. Отработанный материал поначалу просто сбрасывали в окружающую среду, как обычный мусор. Прилегающей местности был нанесен значительный урон. Так зародилась статистика радиационных аварий в мире. Началась эра радиоактивного загрязнения окружающей среды человеком.

Мирный «атом»

С середины 20 века начались разработки двигателя, для применения его в транспортной отрасли. По мере развития этого направления пробовали разрабатывать атомолет, атомовоз, атомоход. Самой удачной оказалась идея создать суда на атомном ходу. В гражданской сфере это атомные ледоколы, .

В медицине радиация стала служить во благо почти сразу после открытия. Сегодня радиоактивное излучение эффективно используется в области неврологии, онкологии, кардиологии, а также комплексной диагностики.

Статистика радиационных аварий в мире в сфере народного хозяйства:


Годы

Тип выброса, условное * кол-во

Неорганизованный сброс ядерных отходов Аварии на производстве и другие утечки Гражданские инциденты
1944–1949 2 4
1950–1959 1 15
1960–1969 1 11
1970–1979 1 10
1980–1989 1 28 1
1990–1999 2 31 15
2000–2009 2 10 9

* – в таблице приведены условные количественные значения. Так, к примеру, только на предприятии «Маяк» (Челябинская обл., Россия) за все время работы известно порядка 32 происшествий разной степени тяжести, а в сводную статистику попали лишь 15 из них.

Из таблицы можно заметить, что с 90 годов начали происходить инциденты среди граждан. Участились случаи кражи ядерных материалов, попытки их сбыта (виновники в большинстве случаев вскоре от полученного облучения). В частности, наблюдалось хищение медицинских радиоактивных источников, которые разбирали и продавали в качестве металлолома. Вообще, на предприятия по переплавке металлолома не раз попадал различный «зараженный» радиацией материал.

Ядерные катастрофы


После открытия цепной реакции распада в 1941 году задумались о применении ядерного ресурса для выработки электроэнергии. В 1954 году была завершена первая в мире АЭС (г. Обнинск, СССР). В наше время на планете насчитывается около 200 электростанций. Однако обеспечить безаварийную работу таких объектов удается с трудом.

Для оценки степени опасности данных статистики радиационных аварий в мире в 1990 году была разработана INES (ИНЕС) – международная классификация ядерных событий в гражданской сфере. Согласно этой шкале крупными радиационными авариями в мире считаются происшествия, оцененные выше 4 баллов. За всю историю ядерной энергетики насчитывается около 20 таких случаев.

INES 4. События, приводящие к выбросу в окружающую среду незначительных доз радиации, эквивалентных 10–100 ТБк 131 I. В таких авариях фиксируются единичные смертельные случаи от облучения. В зоне происшествий требуется только контроль продуктов питания. Примеры аварий:

  1. Флерюс, Бельгия (2006).
  2. Токаймура, Япония (1999).
  3. Северск, Россия (1993).
  4. Сен-Лоран, Франция (1980 и 1969).
  5. Богунице, Чехословакия (1977).

INES 5. Происшествия, в результате которых выброс радиации эквивалентен 100–1000 ТБк 131 I и служит причиной нескольких смертей. В таких зонах может потребоваться локальная эвакуация. Примеры:

  1. Гояния, Бразилия (1987). Был найден некий бесхозный объект, который оказался разрушенным высокорадиоактивным источником Цезия-137. Сильные дозы облучения получили 10 человек, 4 из них погибли.
  2. Бухта Чажма, СССР (1985).
  3. Три-Майл-Айленд, США (1979).
  4. Айдахо, США (1961).
  5. Санта-Сюзана, США (1959).
  6. Виндскейл-Пайл, Великобритания (1957).
  7. Чок-Ривер, Канада (1952).

INES 6. Аварии, в которых выброс радиоактивного материала в окружающую среду эквивалентен 1000–10000 ТБк 131 I. Требуется эвакуация населения или укрытие его в убежищах. Пример известен один. Это самая первая радиационная авария в мире подобного масштаба – Кыштымская, СССР (1957).

«Маяк» – предприятие по хранению и переработке ядерного топлива в Челябинской области. В 1957 году произошел взрыв емкости содержащей 70–80 тонн ядерных отходов. Образовалось радиоактивное облако, которое разнесло опасные вещества по территории более 23 тыс. км 2 на головы 272 тыс. человек. Впервые 10 суток от облучения погибло порядка 200 чел.

INES 7. Этот балл присваивается крупнейшим радиационным авариям и катастрофам в мире. Они характеризуются обширным радиационным воздействием на людей и окружающую среду, эквивалентны выбросу в 10 000 ТБк 131 I и более. Несут в себе колоссальные последствия для здоровья человека и состояния природы. Требуется срочное осуществление запланированных и длительных контрмер, разработанных для подобных случаев. Этот рейтинг присвоен двум самым крупным радиационным авариям в мире:

  1. Фукусима (2011) . Череда трагических событий обрушилась на Японию в тот год. Не устояла перед ними и АЭС Фукусима-1. и последующее за ним оставили 3 реактора без электроснабжения, а значит и без системы охлаждения. Взрыв был неизбежен. Заражены радиацией, оказались обширные территории, больше всего в аварии пострадали воды океана. Зоной отчуждения стала 30-километровая территория вокруг АЭС. За первый год от лучевой болезни скончались приблизительно 1 тыс. чел.
  2. Чернобыль (1986) . Катастрофа на Чернобыльской АЭС произошла 26 апреля. В четвертом энергоблоке, где находилось порядка 190 тонн ядерного топлива, прогремел взрыв. Начавшаяся из-за ошибочных действий персонала авария приобрела неадекватные масштабы вследствие (как позже выяснилось) нарушений, допущенных при строительстве реактора.

В результате около 50 тыс. км 2 сельскохозяйственных земель стали непригодны для возделывания. В 30-километровую зону отчуждения попал город Припять, население которого на тот момент составляло 50 тыс. чел. А также другие населенные пункты.

Статистика радиационных аварий показывает, что в последующие двадцать лет от облучения погибло около 4 тыс. чел.

Военный «атом»

О разработке ядерного оружия стали задумываться еще с 1938 года. В 1945 г. США впервые в мире испытали ядерную бомбу на своей территории, и следом еще две сбросили на города Японии: Хиросиму и Нагасаки. Было убито более 210 тыс. человек, .

Согласно данным Википедии город Хиросима был полностью восстановлен в 1960 году. За период с 1945 по 2009 год известно о 62 испытаниях ядерного оружия и 33 авариях военной техники, использующей ядерные силовые установки в качестве двигателя или с ядерным оружием на борту.

Годы

Тип выброса, кол-во шт .

Испытание оружия Аварии

военной техники

1945–1949 2
1950–1959 13 1
1960–1969 28 9
1970–1979 12 3
1980–1989 7 7
1990–1999 2
2000–2009 11